On non-Continuous T-norms

Dr. Nuri Ben Youssif.	Dr. Stacho. Laszlso
Dept. of Mathematics - Facuty of Sciene	Dept. of Mathematics - Facuty of Sciene
Tripoli university	Szeged University- Hungry

Abstract :

This paper provides a precise parametric classification of both left and right semicontinous T-norms along with the description of some features of T-norms without continuity assumptions.

Keywords : Partial order, continuity, binary relation

1- Introduction :

In fuzzy logics, T-norm means a binary operation $T: [0; 1]^2 \rightarrow [0; 1]$ satisfying the following axioms.

 $(T1)T(y;x) = T(x;y) \le T(\dot{x};y) \quad for any \ 0 \le x \le \dot{x} \ and \ 0 \le y$ ≤ 1 $(T2)T(x;T(y;z)) = T(T(x;y);z) \quad for any \ 0 \le x;y;z \le 1$

$$(T3)T(0; x) = 0 \text{ and } T(1; x) = x \text{ for any } 0 \le x \le 1$$

Most authors^[3,4,5] include also the continuity of T into the definition, and actually there is a complete classification for the continuous T-norms.

This paper focuses on the case of non-continous T-norms. In another terminology, (T1), (T2), (T3) mean that the algebraic structure $T \coloneqq ([0; 1]^T, \geq)$ with the binary operation.

$$x_{\bullet}^{\mathrm{T}} y = T(x; y), x; y \in [0; 1]$$

Is an ordered Abelian semigroup on [0;1] with neutral element 1 and sink 0. Also, in accordance with the usual terminology, we say that the T-norm ${}^{T}_{\bullet}$ is strict if (T4) T(x_l ;y)< T(x_2 ;y) whenever $0 \le x_1 < x_2 \le 1$ and $0 < y \le 1$

In the sequel we shall fix an arbitrary T-norm^T, and we shall write simply xy instead of $x_{\bullet}^{T}y$ without danger of confusion with the notation of the usual numerical product of real numbers (which may appear only as a simple special case of continuous T-norm). thus, in this terminology axioms (T1)... (T4) mean simply

$$(T1)xy = yx, (T2)x (yz) = (xy)z, (T3)0x = 0 \le 1x = x, (T4)x_1y$$
$$< x_2y (x_1 < x_2; y \ne 0)$$

We shall also use the customary notation a_n for the n-th T_{\bullet} -power $a^n =$

 $\underline{a \dots a}$ which is well – defined by the associativity (T₂). *n terms*

Main Results:

1.1. Definition: The binary relations << on the interval [0;1] is introduce as follows :

$$a \prec b \Leftrightarrow inf_n a^n \leq inf_n b^n; a \sim b : \Leftrightarrow a \prec b \prec a$$

1.2. Lemma. (1) the relation \prec is a linear ordering with a \prec b for a \leq b. In particular, \sim is an equivalence relation whose equivalence classes are subintervals of [0,1].

(2) for any powr N we have $a^{N} \sim a$.

(3) We have ab ~ $\min\{a, b\}$

Proof: As a consequence of axioms (T1) + (T3) the powers

$$T^{(n)}(x) = x^n$$
 (n = 1,2...)

are increasing function $[0,1] \rightarrow [0,1]$ with $T^{(1)} \ge T^{(2)} \ge T^{(3)} \ge \cdots$ Therefore their limit $T^{(\infty)}$ is a well-defined with

$$T^{(\infty)}(x) = inf_n x^n \quad (0 \le x \le 1)$$

By definition, we have $a \prec b$ iff $T^{(\infty)}(a) \leq T^{(\infty)}(b)$. Since the limit of increasing function is increasing.statement (1) is immediate.

(2) We have $T^{(\infty)}(a^N) = \lim_{n \to \infty} a^{Nn} = \lim_{n \to \infty} a^n = T^{(\infty)}(a)$.

(3) We may assume $a \le b$ without loss of generality. Then $a^2 \le ab \le a1 = a$. Since $a \sim a^2$ by (2), and since the equivalence classes of \sim are intervals by (1), we conclude $a^2 \sim ab \sim a = \min\{a,b\}$.

Henceforth we introduce the notations

$$\mathfrak{T} := \{I_{\alpha} : \alpha \in A\} \coloneqq \{\{x : x \sim a\} : a \in [0, 1]\}$$

for the family of all equivalence classes of the relation ~. We know already that \mathfrak{T} is a set of pairwise disjoint intervals forming a partitons of [0,1] such that $I_{\alpha} \leq I_{\beta}$ and $I_{\alpha} < I_{\beta}$ (i.e. a < b for all couples $(a, b) \in I_{\alpha} \times I_{\beta}$) whenever $a \leq b$ for some $a \in I_{\alpha}$ and $b \in I_{\beta}$. We shall say simply that the point $e \in [0,1]$ is an idempotent if it is idempotent with respect to the product \prod_{\bullet}^{T} , that is $e^{2} = e \prod_{\bullet}^{T} e = T(e, e) = e$.

1.3. Corollary: (1) If the equivalence class I_{α} is a left-closed interval then its initial point e :=min I_{α} is an idempotent.

(2) If I_{α} is a non-degenrate right-closed interval then its endpoint f := max I_{α} is no idempotent, moreover $f > f^2 \ge f^3 \ge \cdots \rightarrow \inf I$.

(3) If I_{α} is a non- degenerate right- open interval then $f := \sup I_{\alpha}$ is an idempotent.

(4) if $I_{\alpha 1} < I_{\alpha 2} < \cdots$ is an increasing sequence in \mathfrak{T} then the point g :=sup($\bigcup_n I_{\alpha n}$) is an idempotent.

Proof: (1) Assume I = { $x: x \sim e$ } with $e = \min I (\in I)$. Then $e = T^{(1)}(e) \ge T^{(2)}(e) = e^2$. By Lemma 1.2(2) we have $e^2 \sim e$ and hence $e^2 \in I$ with $e^2 \ge e = \min I$.

However, ingeneral $e = T^{(1)}(e) \ge T^{(2)}(e) = e^2$.

(2) Assume $I = \{x : x \sim e\}$ with $f = \max I \ (\in I)$. Given any element $x \in I$, by definition we have $x \sim e$ with $\inf_n x^n = T^{(\infty)}(x) = T^{(\infty)}(e)$. It follows

$$\inf\{x: x \sim f\} = \inf I = T^{(\infty)}(f)$$

Hence the case $f = f^2$ is impossible because this would imply $\inf I = T^{(\infty)}(f)$ = *f* contradicting the non-degeneracy of *I*. Thus necessarily $f = If > f^2 = If^2 \ge f^3 \ge \rightarrow T^{(\infty)}(f) = \inf I$.

(3) Assume I = (x: $x \sim e$) with sup I = f($\notin I$). By lemma 1.2(3), the contrary $f^2 < f$ would imply the contraction $f \sim f^2$ with $f \in I$.

(4) Assume the contrary that let $g > g^2$. Then $g^2 < I_{an} < g$ for some index *n*. However, by Lemma 1.2(1)+(2), then we would have $g^2 \sim x \sim g$ for all $x \in I_{an}$ entailing the contradiction $I_{an} > g \in I_{an}$.

1.4. Lemma. Let $P: [0,1] \rightarrow [0,1]$ be an increasing backward projection (that is $p(y) \leq P(x) = P(P(x)) \leq x$ whenever $0 \leq y \leq x \leq 1$) onto the set Ω . Then the complement $[0,1]/\Omega$ is the union of a family of pairwise disjoint left-open intervals and

$$P(x) = max \ (\Omega \cap [0,x]) \qquad (x \in [0,1])$$

Proof: It suffices to see only that given any point $x \in [0,1]/\Omega$ with P(x) < x, every point *y* from the left-open interval (P(x),x] is mapped into P(x) by *P*. let P(z) < y < z by assumption, *P* is an increasing mapping with P = P o*P*. Hence the conclusion $P(x) = P^2(x) \le P(y) \le P(x)$ entailing P(y) = P(x) is immediate.

1.5. Lemma. Given a *T*-idempotent $e = e^2 < 1$, with its multiplication range $\Omega_e := \{ex: x \in [0,1]\}$ we have

$$ex = max \left(\Omega_e[0, \mathbf{x}]\right) \qquad \qquad (0 \le x \le 1)$$

Also $e = \max \Omega_e$ and $[0,1] \setminus \Omega_e$ is the union of a family of pairwise disjoint *left-open intervals.*

Proof. According to (T1)+(T2), the mapping $P_e(x) := ex$ is an increasing backward projection of [0,1] onto Ω_e . indeed, $ey \le ex = (ee)x = e(ex)$ whenever $0 \le y \le x \le 1$. Since $w = Pe(w) \le Pe(1) = e \le \Omega_e$, necessary $e = max \Omega_e$. The remaining statements are immediate from Lemma 1.4.

1.6 Lemma. The set $E = \{idempotents\}$ is left-closed that is $E \ni e_n \nearrow e \implies e \in E$. **Proof** Assume $E \ni e \not\subset e$ Then we have $e \ge e^2 \ge e^2 - e \not\subset e$ entailing

Proof. Assume $E \ni e_n \nearrow e$. Then we have $e \ge e^2 \ge e_n^2 = e_n \nearrow e$ entailing $e = e^2 \in E$.

1.7. Proposition: Let T be a strict T-norm. Then

(1) the only idempotents are 0 and 1.

(2) We have $\{1\} = \{x: x\sim 1\}$ and either $I = \{|0,1|, \{1\}\}$, or the interval $\{x: x\sim 0\}$ is closed with max $\{x: x\sim 0\} < 1$ and each interval $I_{\alpha} \in I$ with $0,1 \not\equiv I_{\alpha}$ is non-degenerate, open from left and closed from right.

(3) there is no infinite strictly increasing sequence $I_{\alpha 2} < I_{\alpha 2} < \cdots$ with sup $(\bigcup_n I_{\alpha n}) < 1$ in I.

Proof:

(1) Assume $e \in (0,1)$ would be an idempotent. Then, by Lemma 1.5, we would have ex = e for all $e < x \le 1$ contradicting the strictness of T.

(2) is immediate from statement (1) and Corollary 1.3(1)+(3).

(3) is immediate from from statement (1) and Corollary 1.3(4). \blacksquare

1.8.Corotlary. Let T be a strict T-norm. Then there are two possibilities concerning the order structure of the family I of equivalence classes:

(1) $I = \{[0, 1), \{1\}\};$

2- { $x: x\sim 0$ } = [0,w] with 0 < w < 1 and the interval (w, 1) can be decomposed to a sequence of intervals (w_0, w_1], (w_1, w_2],..., with $w_0 = w$ and $w_n \nearrow 1$ ($n \rightarrow \infty$) and each intervals (w_n, w_{n+1}) is covered by the disjoint union of a (necessarily countable) subfamily { $I_{\alpha}: \alpha \in A_n$ } of I being well-ordered by the relation <. Here order- consecutive intervals are joined at common endpoints.

Recall that a function $\varphi: [0,1]^N \to [0,1]$ is said to be right [left] semiccontinu-ous if $\emptyset(x_n^{(1)}, \dots, x_n^{(1)}) \to \emptyset(x^{(1)}, \dots, x^{(1)})$ whenever $x_n^{(1)} \bowtie x^{(1)} \dots x_n^{(1)} \bowtie x^{(1)}$ [res $x_n^{(1)} \nearrow x^{(1)}, \dots, x_n^{(1)} \nearrow x^{(1)}$]. It is that if \emptyset is increasing then the right [left] semi-continuity of all the sections $x \to \emptyset(a_1, \dots, a_{k-1}, x, a_{k+1}, \dots, a_N)$ implies the right [left] semicontinuity of \emptyset . **1.9. Lemma**: If N > 1 and $T^{(N)}$ is right semicontinous (in particular if T is right semicontinous) then all the intervals $I_{\alpha} \in \mathfrak{T}$ are closed from left.

Proof. Assume $T^{(N)}$ to be right semicontinuous and let $x \in I \in \mathfrak{T}$. Define $e := \inf I$ and consider the sequence x^N , x^{2N} , x^{3N} ,..., By definition $x^n \searrow T^{(\infty)}(x) = e$. The right semicontinuity of $T^{(N)}$ entails $x^{nN} = T^N(x) \searrow T^{(N)}(e) = e^N$. However, since $(x^{nN})_{n=1}^{\infty}$ is a subsequence of $(x^n)_{n=1}^{\infty}$, we have $e = \lim_n x^n = \lim_n x^{Nn} = e^N$. since $e \ge e^2 \ge ... \ge e^N$ it follows $e^2 = e$ and hence $e \in I$ by Corollary 1.4.

1.10. Corollary. If T is a right semicontinuous strict T-norm then $\mathfrak{T} = \{[0,1), \{1\}\}$.

Proof. Immediate from Proposition 1.6 and Lemma 1.7. ■

****. Remark**. Assuming the operation T to be continuous, we can conclude the following .

(1) The powers $T^{(n)}$ (n = 1, 2, ...) are continuous increasing functions and hence their infimum $T^{(\infty)}$ is left semicontinuous and increasing.

(2) From (1) it readily follows that the intervals I_{α} are closed from left with idempotent initial point.

(3) It is well-known that the idempotents of a continuous T-norm form a closed subset of [0,1] whose complement is the union of a countable family of pairwise disjoint open intervals. Hence one can deduce that the intervals I α are either closed from the left and open from right or consist of a single

point which is necessarily an idempotent. The points of continuity of $T^{(\infty)}$ are exactly the idempotents of a continuous T-norm.

2- Structure Of A Equivalence Intervals :

Henceforth let $S:=([w,a],., \ge)$ be an ordered Abelian semigroup on the real intervals [w,a] such that :

(S1) $xy_1 \le xy_2$ whenever $y_1 \le y_2$. (S2) $a > a^2 > a^3 > \dots$ and $a^n \searrow w(n \to \infty)$

Since, by (S2), (w,a] is the disjoint union of the intervals $(a^{n+1}, a^n]$ (n=1,2,...), for any element $b \in (w,a]$ and for any index k = 1,2... we can define

$$n_k(b) \coloneqq [n: a^{n+1} < b^k \le a^n]$$

2.1. Lemma. Given any $b \in (w, a]$, the intervals $[n_k(b)/k, (n_k(b)+1)/k]$, k=1,2,.. have a unique common point.

Proof. Since for the lengths we have $|[n_k(b)/k, (n_k(b)+1)/k]| = 1/k \rightarrow 0$ (k $\rightarrow \infty$), at most one common point may exists. To establish its existence, according to Helly's theorem. It suffices to see that each pair of them admits a non-empty intersection, that is

(2.2)
$$n_k(b)/k \le (n_l(b)+1)/\ell$$
 for all $k, \ell = 1, 2, ...$

Consider any couple of incides $k \neq e$. by definition, $a^{n_k(b)+1} < b^k \le a^{nk(b)}$ and hence by (S1), also $a^{\ell(nk(b)+1)} \le b^{k\ell} \le a^{\ell nk(b)}$. Similarly $a^{k(n\ell(b)+1)} \le b^{k\ell} \le a^{kn\ell(b)}$. It follows $a^{k(ne(b)+1)} \le b^{k\ell} \le a^{\ell nk(b)}$ and hence by (S2) we conclude $k(n_\ell(b)+1 \ge \ell n_k(b))$ which is equivalent to (2.2).

2.3. Definition. Henceforth we write

$$L(b) \coloneqq [the unique of \cap_{k=1}^{\infty} [n_k(b)/k, (n_k(b) + 1)/k]] \quad \text{for} \quad \text{any}$$
$$b \in (w, a]$$

Furthermore $\Lambda := L((w,a])$ shall denote the range of the function L.

2.4. Remarks :
$$(1)n_k(b) \in [[kL(b)] - 1, [kL(b)] + 1]$$
 for all $k = 1, 2, ...$ and $b \in (w, a]$.^{*}

(2) If
$$b \in (a^{n+1}, a^n)$$
 then $L(b) \in [n, n+1]$. In particular $L(a^n)$
= $n, (n = 1, 2, ...)$

(3) the mapping L is decreasing trivially, but not necessarily strictly decreasing

Example: $S \coloneqq ((-\infty, 1], ., \ge)$ with $xy \coloneqq [x] + [y]$ and $L(b) = \lfloor b \rfloor$

2.5. Lemma. *We have* L(bc) = L(b) + L(c) for all $b,c \in (w,a]$.

Proof. According to Remark 2.4(1), $L(bc) = \lim_{k\to\infty} n_k(bc)/k$. By definition, $a^{nk(b)} \ge b^k > a^{n_k(b)+1}$ and $a^{n_k(c)} \ge c^k > a^{n_{k(c)+1}}$. Hence $a^{n_k(b)+n_k(c)} \ge (bc)^k \ge a^{n_k(b)+n_k(c)+2}$. By the definition of the value n_k (*bc*) and axiom (S2) it follows $n_k(b) + n_k(c) - 1 \le n_k(bc) \le n_k(c) + 3$.

^{*} $[x] := \inf\{n \text{ integer } : x \leq n\}$ standing for the upper entier part function.

Therefore $L(b) + L(c) = \lim_{k \to \infty} (n_k(b) + n_k(c))/k = \lim_{k \to \infty} n_k(bc)/k$ $k = L(bc). \blacksquare$

2.6. Corollary :

(1) *The range* Λ of *L is a subsemigroup of* ([1, ∞),+).

(2) In particular Λ is countable under the hypothesis that L is not strictly decreasing and $(S1^*) xy_1 < xy_2$ whenever $y_1 \le y_2$.

(3) Λ is Lebesgue – measurable. If it has positive Lebsgue measure, for some n we have $[n, \infty) \subset \Lambda$.

Proof.

(1) Is immediate from Lemma 2.5.

(2) The inverse Image $L^{-1}{\{\xi\}} := {b: L(b) = \xi\}, \xi \in \Lambda$ are pairwise disjoint intervals since the function *L* is decreasing. If *L* is not strictly decreasing, some interval $L^{-1}{\{\xi_0\}}$ has positive length. By 1.5 we have $L^{-1}{\{\xi_0 + \eta\}} \supset L^{-1}{\{\xi_0\}} + L^{-1}{\{\eta\}}$ and $L^{-1}{\{\xi_0+n\}}$ is also a non-degenerate interval for any $\eta \in \Lambda$ if (S1^{*}) holds. Since there may only be countably many pairwise disjoint non-degenerate real intervals, we conclude (2).

(3) It is well-known that the rnage of a decreasing real function is a Borel set (actually a sequence of points added to an interval minus a countable union of intervals). In particular Λ = range (*L*) is Borel measurable. Suppose mes (Λ) > 0 (mes denoting Lebsegue measure) then almost every point of Λ is Lebsegue point. In particular , mes ($\Lambda \cap [\propto, \beta] > (\beta - \alpha)/2$

for some $1 \le \propto < \beta$. Recall that given any set Ω of real numbers with density > 1/2, the sum $\Omega + \Omega \coloneqq \{\omega_1 + \omega_2 : \omega_1, \omega_2 \in \Omega\}$ contains an interval with positive length.^{*} Hence we conclude that $\Lambda \supset \Lambda + \Lambda \supset (\Lambda \cap [\propto, \beta]) + (\Lambda \cap [\propto, \beta])$ contains some interval *I* of length $\delta > 0$. It is immediate that $\Lambda \supset \Lambda + \cdots + \Lambda$ with $[1/\delta]$ terms contains the interval $J \coloneqq I + \cdots + I$ with length >1. According to Remark 2.4(2), we have $\{1, 2, \ldots\} \subset \Lambda$. It follows $\Lambda \supset \bigcup_{k=0}^{\infty} k + J \supset [[\inf J], \infty)$.

2.7 Lemma. (1) If the underlying product is left semicontinuous [i.e. $\dot{x}_i y \nearrow xy$ whenever $x_i \nearrow x$] then its logarithm L is also left semicontinuous. (2) If the product is right semicontinuous then L is right semicontinuous.

Proof: Assume the product is left semicontinuous. It is well-Known that then we have even $x_iy_i \nearrow xy$ whenever $x_i \nearrow x$ and $y_i \nearrow y$.

(Indeed, given any $\varepsilon > 0$, there exists jo with $xy \ge xy_{jo} \ge xy - \varepsilon/2$. Also there exists $j_1 \ge j_0$ with $xy_{jo} \ge x_{j1}y_{jo} \ge xy_{jo} - \varepsilon/2$ and hence $xy \ge x_{j1}y_{jo} \ge xy - \varepsilon$. Given any couple $x_i \land x$ resp. $y_i \land y$ of sequences, for any $i \ge j_1$ we have $xy \ge x_iy_i \ge x_{j1}x_{j0} \ge xy - \varepsilon$). In particular the powers $b \mapsto b^k (k = 1, 2, ...)$ are left semicontinuous. It follows that, for any fixed k, the step function $b \mapsto n_k(b)$ is left semicontinuous. Prrof : Fix k arbitrarily. Since the power $b \mapsto b^k$ is increasing, the function, n_k

*Proof. We may assume

 $\Omega \supset [\alpha, \beta] \setminus \bigcup_{k=1}^{\infty} I_k$ where I_1, I_2, \dots are pairwise disjoint open intervals with $\sum_{k=1}^{\infty} mes(I_k) = (\beta - \alpha)(1/2 - \varepsilon)$ for some $\varepsilon > 0$. The vertical resp.

Horizontal stripes $I_k \times [\alpha, \beta]$ and $[\alpha, \beta] \times I_k$, k = 1, 2, ... cut most $2(1/2 - \varepsilon)\sqrt{2}(\beta - \alpha)$ length from the diagonal segments $D_p := \{(\omega_1, \omega_2) : \alpha \le \omega_1, \omega_2 \le \beta, \omega_1 + \omega_2 = p\}$ which have length $>\sqrt{2}(\beta - \alpha - \varepsilon)$ whenever $p \in (\alpha + \beta - \varepsilon, \alpha + \beta + \varepsilon)$. Therefore $\Omega + \Omega \supset (\alpha + \beta - \varepsilon, \alpha + \beta + \varepsilon)$.

(.)decreases.Consider a sequence $b_i \nearrow b > \omega$. Since $\omega < inf_i b_i \le a$, the decreasing sequence $\{n_k(b_i): i = 1, 2, ...\}$ is bounded. Since $n_k(.)$

Assumes integer values, there is

 i_0 with $n_k(b_i) = N := \lim_i n_k(b_i)$ for $i \ge i_0$. Then $a^{N+1} = a^{n_k(b_i)-1} < b_i^k \le a^{n_k(b_i)} = a^N$ for any $i \ge i_0$. It follows $a^{N+1} > b \ge a^N$ which means that $n_k(b) = N$ i. e. $n_k(b_i) \nearrow N = n_k(b)$. On the other hand the sequence $n_k(.)/k(k = 1, 2, ...)$ converges uniformly to L (.) (actually $sup_b | L(b) - n_k(b)/k | \le 1/k$ for all k). Hence we deduce that left semicontinuity of L, because, in general, the uniform limit of τ -contyinuous functions is τ -continuous for any topology τ . Thus, in particular L is left semicontinuous. The proof

of (2) is analogous with the step functions $\tilde{n}_k(b) \coloneqq [n:a^n \le b^k < a^{n-1}]$ in place of n_k (.).

2.8 Lemma. For any $c \in (\omega, a]$, the functions $n_k^c(b) \coloneqq [n : c^{n+1} < b^k \le c^n]$ and $L^c(b) \coloneqq \lim_k n_k^c(b)/k$ are well – defined, moreover we have $L^c = L(c)^{-1}L$ in terms of the logarithm function defined in 1.3.

Proof. $S^{c} = ((w,c],...\geq)$ is an orderd subsemigroup of $S = ((w,a],..\geq)$. Hence we can apply the previous arguments with c in place of a to establish that all the function n^c along with L^c are well-defined and decreasing. By definition we have $c_{k}^{n n(b)+1} < b^{k} < c_{k}^{n c(b)}$, whence

$$(n_k^{c}(b) + 1) L(c) = L(c^{nk(b)+1}) > L(b^k) = kL(b) > L(c^{nk(b)}) = n_k^{c}(b) L(c).$$

Since $L^{c}(b) = \lim_{k} n_{k}^{c}(b)/k$, we get $L^{c}(b) L(c) > L(b) > L^{c}(b) L(c)$.

<u>References</u> :

- [1] E.P. Kelment R. Mesiar and E. Pap, triangular norms. Position poper
 I: basic analytical and algebraic properties, fuzzy sets and systems, 143(2004),5-26.
- [2] Cho-Hsin ling, representation of associative functions, publ. Math. Debrecen, 12 (1965), 189-212.
- [3] Aydria. A. Dietmar. S Pub on colones preserving a reflexive binary relation acta sci. Math (Szeged). Vol, 67(2001), p461-473.
- [4] KosakuYosida, Functional Analysis. AMS subject classification (1970): 46-xx.
- [5] E. Fried Dual discriminator, revisted Act Sci. (szeged), 64(1998), 437-453.
- [6] Benoit larose. Acompleteness isotone operations onfinite chain Acta Sci. Math. (Szeged) 59 (1994), 319-356.
- [7] K. Baker, G. Mcnulty and H. werner, the finitly based varities of graph algebras, acta sci. Math. Szeged, 51 (1987), 3-15