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Abstract:

Compact finite difference schemes up to order eight for solving the
inhomogeneous Helmholtz equation in one-dimension with Dirichlet
and/or Neumann boundary conditions, are developed in this paper. The
schemes are implemented to solve a problem with a proper solution.
Numerical procedures have been conducted to demonstrate the efficiency
of these schemes.
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1. Introduction:

There has been a growing interest in developing higher order accurate
discretization methods. In order to obtain high accurate numerical
solutions, in the standard finite difference methods for solving ordinary
and partial differential equations [6,10], one has either to increase the
number of nodes making smaller mesh sizes which require more
computing time and storage space or to use high order schemes which
require the increase of the stencil of grid points, hence increasing the
bandwidth of the stiffness matrix, which makes a fast direct solver
difficult. Therefore, compact finite difference schemes are desired to
solve differential equation numerically. There are efforts to compute
more accurate solutions using limited grid sizes through developing high-
order compact finite difference schemes. There are two main approaches
for the construction of compact difference schemes: Pade approximation
method [2] and Taylor series method [10]. Compact difference schemes
are high-order implicit methods which feature higher-order accuracy with
smaller stencils and have been used widely in the large area of
computational problems, for example, for the steady convection-diffusion
problem [11,15], the Poisson equation [1,9,13] and the Helmholtz
equations [7,8, 12].

The inhomogeneous one-dimensional Helmholtz equation:

u'+ku=f(x), xeQ (1)
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where £ 1s a constant and Q= {x : a<x <b}, has been the subject of many
investigators. High Order Standard Finite Difference Schemes for
equation (1) has been considered by [4]. A noticeable work for the
homogeneous equation with Sommerfeld’s radiation condition has been
done in [5,14]. A sixth-order accurate compact finite difference method

for the inhomogeneous equation is given in [7].

This paper attempt to develop up to eighth-order accurate compact
finite difference schemes for equation (1) with the Dirichlet boundary
condition applied at one end of the interval and the Neumann boundary
condition on the other end. To be explicit, the boundary conditions are

takon as
u'(a)=oa,u)=p. (2)
The methods to be used here are similar to that used in [7].
2 COMPACT FINITE DIFFERENCE SCHEMES :
A uniform grid of the interval [¢,5] is used with N uniform segments,

so that the grid spacing is /7 =Ax :b];a

and the mesh points are

a=x,<x,<..<x, <x,,=b, where X, =x,+ih,i=12,..,N. Let
u, =u(x,) denote the solution of problem (1)-(2) at x=x, and
u" =u(x,)denote its nth derivative at x =x,. We shall also let f,and

" denote f and its nth derivative at x,, that is f, =f(x,) and

fi(n) :f(n)(xi)-
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In order to find an appropriate description of the compact schemes, a

Taylor series expansion is performed for the descritized field w, .

2 3 4 5 6
u,,, =u, +hu +h—ul o ul(”+h—ul.(4)+h—ui(5)+h—ufﬁ)
2! 3! 4! 5! 6!
7 3)
o e o o)
70 8! i 9!
w,  =u, —hu' +h_2u I (3)+h4 w_I u® L ©
11— 2' i 3' l 4' l 5' l 6' 1
_h_7uﬂ7)+h8 ) _ h (9)+O(h(10)) (4)
7 8 9 o

From equations (3) and (4), we obtain the second order central difference

(8!u,) of the first derivative of u, and the standard second-order central

difference §’u, of the second derivative of , as:

S, :%:u; +O(h?) (5)
2 Ui _2ui +u; " 2
ou;, = e =u;+0(h") (6)

Using equations (3)-(6), we have

1 Ui —U; ' h’ ©) h* 5) h* (7 )
ou, =—+—"—=u/+—u;” +—u,;” +——u;’ +0(h'") (7)
2h 6 120 5040
_ 2 4 6
55”1' — Ui 21,{21 tu; zui"+h—uf4) + h Z/li(G) + h Z/li(g) +O(h(8)) (8)
h 12 360 20160

2.1 The Eighth-Order Compact Finite Difference Scheme

To obtain an eighth-order compact finite difference scheme for equation

(1), we

n University Bulletin — ISSUE No.15 — Vol . 2- 2013




Compact Finite Difference Schemes For One-Dimensional

apply 82 to u'®, using (6)
u® =5u"+0(h?). 9)

Substituting equation (9) into equation (8), we have

2 " h’ (4) h' (6) h° 2,.(6) (®)
Shu, =u!+—u" +—u + Su” +0(h™) (10)
12 360 20160

Writing equation (1) in the descritized form, we have

u! =—k’u, +f, (11)
From equation (11) , we get

ul =—ku!+f" (12)
WO = ks (13)

1

We substitute equations (11)-(13) into equation (10). The result, after

some algebraic manipulation, is

272 47 4 476
502%:(1_1(;1 LKtk 52}1"

+ > lu!
12 360 20160 © ) '
2 272 274 4 2
PR O 82 |f - h 1+h—502 @
12 30 1680 360 56

An implicit approximation for »/ with eighth-order accuracy is given as

2 212 274 4 2
éful.—h— KA K S\ i 1+}L(sc2 @
- 12 30 1680 3600 56

i 272 474 476 (15)
| KR KR K s
127 360 20160

(14)

Let U, denote the eighth-order approximation of u,, thatis u, =U, +O (h*).
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Substituting for ! from equation (15) into equation (11) using equation

(8) together with

, we obtain after some

" f,'l _zfi”_'_fi,: ‘(+4) -2f '+ '(—4)
5C7i = l h2 ! and 5c2fl.(4) =21 1 fhlz fl 1

algebraic manipulation, the following 3-point eighth-order compact finite

difference scheme for the one-dimensional Helmholtz equation

agU,  +ag U, +a, U, =byf, | +byf, +byf .,

16
+Cy i':]+c80fi"+c8lfi':-]+d8 i(—?"'dsafim"'ds 1'(:? ( )
where
474 676 676 k2h2 3k4h4
a80=—2+k2h2—k h” [ 3k h , a81:1+ﬂ, w=h"|1- + ,
12 1120 20160 12 1120
poo KR 9k7h _ k3R R
7201607 Y 12 280 )7 ¥ 201607 "% 11200 7Y 20160

Invoking the Dirichlet boundary condition u(b)=p is straight forward.
For the Neumann boundary condition u'(a)=ca, we need to conduct the

eighth-order approximation. Applying &> to «*, using (6), we get
u? =5u+0(h?). (18)
Substituting equation (18) into equation (7), we have

| O N AT R AP ®)
ou, =u; +—u, ; ou;”+0(h) (19)
6 120 5040

Differentiating equation (11), we get
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u =—ku! +f/ (20)
ul.(S) =—k zul.(” +fi(3) (21)

Using &’ =u+0(h*), and substitute equations (11), and (20)-(21) into

equation (19), we obtain

272 4714 676 2 272 4714 27 4
5,%:(1_1(;1 P ]uHh (l_kh Kt kh 52]//
(22)

‘ 6 120 5040 6 20 840 840

(o h
+—|1+—=8 |/, +0(n*)
1200 46

. L2+ S B _9r® L r®
USlng 562fi’:fl+l fl fl*l 2f1 + i—1

e , Of 0 =4 - and (5), we obtain

after some algebraic simplifications

272 434 676 2,5 3 272 474
Ui~ =2ha l_kh +kh Ak ) Kk (fil—l+fil+l)+h_ l_kh +kh i
6 120 5040 ) 2520 3 21 840

5

hS
+——(f )+ D)+ —F£ P +O0(h®
2520( i—1 f1+l) 3f1 ( )

Replacing u, by U, , we see that for the first node ( x =x, =a),

272 474 676 2715
UZ—UO:2h0{1—k nok k h] k’h

6 120 5040 _2520(f°+f2)

h’ kh* k*h? h’ h’ (23)
+?(1— + }/H ( S+ 2(3))+?f](3)

21 840 2520

University Bulletin — ISSUE No.15 — Vol . 2- 2013




Dr. Ali Mohamed Elconsul & Entesar Othman Lagha

If we put i=1 hil equation (16), we have
agU, +ag U, +agU, =byf +byf, +byf,
+C8lf0 eyl \regfSHdof Y df P +dy f, (24)

It is to be noted that if 1 is not defined outside the interval [a.b], then it
must be continued to the left of x =a so that f,=f(a—-h) can be

evaluated.

Multiplying equation (23) by 4, and add it equation (24), we get

2p2 474 67,6 2
asoU1+2a8,U2=2haa8](1_k h +k h _k h ] ag,k *h

120 5040 2520 i+77)

h’ k*h*  k*h? h’
N + n @4,
3 ( 21 840 }[‘ 2520 Ui +27) (25)
hS ”n " "
+5f](3)+b81f0 +hgf | Dy f ) Feof o g oy

+d81f0(4) +d80f](4) +d81f2(4)

Equation (25) together with equations (16) for i =2,..,N form a linear
system of N equations in N unknowns U, for i =12,...N .
2.2 The sixth-order and fourth-order compact finite difference schemes

The sixth-order and the fourth-order compact finite difference
schemes for equation (1) and the sixth-order and the fourth-order
approximation of the Neumann boundary condition (2), may be found in

a similar way as in the case of the eighth-order [7].
Sixth-order:

agU, +a U, +agU, . =byf,  +bef, +bgf, . +cof " +eof " +eaf (26)
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k*h* k*h*
a U, +2a,U, =2haa, (1 _T_ 120 ]"‘bm(fo +f)+bgf | +
agh’ k*h? ' " 1 "
+ ;]0 (9_ 7 ]f] +cé](fo +f2>+cé(lf]

where

272 47 4
aw:—2+k%2@—7kh ], = —ig),

Tk*h’ k’n' 7h* h'
b :h2 1_ )b :——’ :—’ =
“ [ 90 ] “ 77360 70 90 7 T 360

Fourth-order: U,  +aU, +U,, =b,f, +c,f"

k’h?

3
aU,+2U, =2ha[l— ]+b40f] +h?f]'+c40f]" ,where

12 12 12

2712 2712 4
am::—2+k2h2[r—k h ] , bm::hz[l—k h ], cm::ﬁ—.

a

3. TEST EXAMPLE AND NUMERICAL RESULTS:

h3
20 Vi+f2)

(27)

(28)

(29)

An example with a known exact solution is chosen in order to show

the performance of the high order compact schemes developed in section

2 using computer programs that implement these schemes. Testing is

conducted on the unit interval [0,1] with a uniform mesh size », and

boundary conditions (2) are prescribed on ends of the unit interval. The

computations were performed in a MATLAB environment using version

7.6 and was executed on Pentium(R) at 1.86 GHz, RAM 1 GB. The
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computed solutions and the exact solution are compared with the use of

the ¢*-norm of the error vector, which is defined for e =(e,e,,....e,/) as

M
_ 2
lell, = [ 2Jei[
i=l

Test problem :

u"+k*u=x>+e*, 0<x <l

u(0)=0, u(1)=0

with the exact solution

u(x)=Acoskx +Bsinkx +(1/k "2x*—Q2/k*)+1A/(k*+1)e",
where

A=QkH-A/(k*+1) ,

B =-Acosk /sink +(-1/k*+2/k*—e/(k*+1))/sink .

The eigenvalues of the corresponding completely homogeneous problem
are [3]: (+1/2°z% n=0123,.. If k* is equal to one of these
eigenvalues, then the problem has no solution. We investigate the

numerical solutions when & is close to one of the eigenvalues.

The ¢*error norms of the numerical solutions to this problem of O (k%)
, O(h®) and O(h*) for N =16,32,64,128 and for k =1,10,20,30.40,50,60 are
shown in Table 1. Fig. 1 compares these schemes to the exact solution at
k=1 and N =16. In general there is a significant improvement in the

accuracy of O(h°) over O(h*) and that of O(k*) over O(#°) and in each
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of these schemes the error norm ¢ decreases with the increase of the
number of nodes. However if ¥ =1, O(h®) decreases with the increase of
N and O (h°) also decrease with the increase of N . This is shown in Fig.

1 and Fig. 2.

When & 1is large, the accuracy of all schemes in general is poor.
However these schemes still provide reasonable approximations of the
solution for moderate values of k¥ ( k <60) despite the high oscillatory

property of the solution in this case, Fig. 4.

In Table 2, the ¢*-norm of the errors for O(k*), O(h°) and O(®)
schemes for N =16,32,64,128 are compared for 1.5<k <xz/2. The purpose
of this comparison is to see the behavior of the approximate solutions
when &’ is close to the eigenvalue 7°/4. As k approaches z/2, all
schemes become sensitive to the value of & and their accuracy is very
poor. However, a reasonable accuracy in O(h*), O(h®), O(h®) is still
attained as long as ¥ remains respectively within 0.0163, 0.0001266 and
0.0001277 away from the eigenvalue /2, Fig. 4.

Table 1. error norm for O(h*), O(h®) and O(h*) compact finite difference

schemes for N =16,32,64,128 and for &k =1,10,20,30.40,50,60 .

k N O (h*) O (h°) O(h*)

1 16 8.6610e-008 1.3721e-010 1.8355e-014
32 7.5554e-009 3.2364e-012 3.8360e-013
64 6.6185e-010 1.4166e-012 1.6413e-012
128 4.9930e-011 2.2475e-011 1.2702e-011

10 16 2.5403e-004 6.3223e-006 4.9343e-008
32 2.1323e-005 1.3321e-007 2.5985e-010
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4 6 8
k N Oh™) o) oh’)
64 1.8559¢-006 2.9027e-009 1.4231e-012
128 1.6322¢-007 6.3872e-011 5.2452¢-014
20 16 0.0108 0.0013 3.9945e-005
20 32 9.3299¢-004 2.3973e-005 1.8430e-007
20 64 7.9103e-005 5.0624¢-007 9.7250e-010
128 7.9103e-005 5.0624¢-007 9.7250e-010
30 16 0.0939 0.3005 0.0065
32 0.0341 0.0015 2.5430e-005
64 0.0021 2.9467¢e-005 1.2752e-007
128 1.7678e-004 6.3482¢-007 6.8668e-010
40 16 0.0171 0.0139 0.0031
32 0.0040 3.1193e-004 9.3387e-006
64 2.2550e-004 5.6473e-006 4.3483e-008
128 1.8788e-005 1.1967¢-007 2.3039¢-010
50 16 0.0372 0.0086 0.0056
32 0.0043 3.9845e-004 1.7889¢-005
64 1.6085e-004 6.2675e-006 7.5265e-008
128 1.3059¢-005 1.3010e-007 3.9082¢-010
60 16 0.0032 0.0032 0.0030
32 0.8368 0.0010 8.2739¢-005
64 2.8845e-004 1.6917e-005 2.9363e-007
128 2.3850e-005 3.4207¢-007 1.4817e-009
0 T T T T T
analytic kel Ne16
ool T O(hv) T
el ——— o(ve)
O(h8)
0.4+
-0.6
£
=}
-0.8+
1+
1.2+
1.4 ’—‘""r—’-/_’ | I | | | I | I
0 0.1 0.2 0.3 0.4 0.5 06 0.7 08 09

Fig.1. Exact, O(h*), O(h®) and O(h®) solutions at k =1 and N =16.
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x 10 x 10 x 10
9¢ . 1.4 1.4
ol o) o(h%) o(h8)
1.2} | 1.2¢ |
7, _
10 | 1l |
6, _
sl | 0.8t 1 0.8+ 1
N_I
4r ] 0.6} 1 0.6} 1
3, _
0.4 | 0.4! |
2, 4
0.2} 1 0.2} 1
1 L u
O — O L O L
0 100 200 0 100 200 0 100 200

Fig. 2. The effect of the increase of the number of nodes /N at fixed wave number (kK =1)

[N}

[N}

[N}

x 10* x 10 x 10
: 7 5 :
o(h O(h® 8
(nE) sl 008 |
6, 4
4, 4
5¢ 7 3.5 1
2, 4
3, 4
4, 4
, , 25 1
3, 4
2, 4
1, 4
ol | 150 |
1, 4
1t i
05! ]
0 e 0 ‘ 0 '
0 100 200 0 100 200 0 100 200
N N N

Fig. 3. The effect of the increase of the number of nodes N at fixed wave number

(k =10).
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Table 2. ¢*-norm of the errors for various finite difference schemes in examples 2 for

N =16,32,64,128 when k approaches 7/2

k N oh") o (h®) O(h®)
1 16 8.6610e-008 1.3721e-010 1.8355e-014
32 7.5554e-009 3.2364¢-012 3.8360e-013
64 6.6185e-010 1.4166e-012 1.6413e-012
128 4.9930e-011 2.2475e-011 1.2702e-011
1.5000000 16 4.0509¢-006 7.0325e-009 7.0513e-012
32 3.5627e-007 1.5469¢-010 2.4396e-014
64 3.1449¢-008 3.3103e-012 5.0499¢-014
128 2.7792e-009 5.7106e-013 1.2455e-012
1.5217835 16 1.3831e-004 8.5577e-008 2.3110e-011
32 1.2032e-005 1.8913e-009 5.5808e-011
64 1.0552e-006 7.6758e-013 4.8167¢-010
128 9.2379¢-008 6.8147¢-010 2.7077e-009
1.5381211 16 3.3181e-004 2.0669¢-007 1.4891e-011
32 2.8864¢-005 4.4547¢-009 1.1008e-010
64 2.5308e-006 3.5696¢e-010 1.2168e-009
128 2.2481e-007 3.6915e-009 5.2885¢e-011
1.5544587 16 0.0014 8.8574e-007 1.7510e-010
32 1.2288e-004 1.9623e-008 9.9630e-010
64 1.0778e-005 2.2108e-009 1.1651e-009
128 9.5867¢-007 1.1031e-008 3.6851e-008
1.57028575 16 1.5335 9.6770e-004 1.0503e-007
32 0.1334 2.0761e-005 2.0012e-007
64 0.0117 2.3305e-006 1.0306e-006
128 0.0010 9.6813e-006 2.5401e-006
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4 6 8
k N o) o) O(h”)
1.5706686625 16 24,5334 0.0155 4.8455¢-007
32 2.1372 3.3670e-004 7.6709¢-006
64 0.1875 2.1267¢-005 3.9840e-005
128 0.0167 2.0105¢-004 3.4362¢-004
1.57073248125 16 97.9598 0.0620 1.5313¢-005
32 8.5464 0.0013 6.33966-005
64 0.7495 7.7310-005 1.4050e-004
128 0.0662 2.6923¢-004 0.0019
x10-3
2.5 T T T T
analytic
,,,,,,,,,,,, o) k=60, N=128
2r o(e) A f
ome) . A
A A B Y I T
151 N i al R I I A T
N A N 8 R O Y I A A A O
\ /\ I N T U T L Y L A
. e
A L A
Vol oY Vol
= 0 0yt I
3 | . I [ T R R Lo [
=S Y Y O Y I I
T Y T O O A A
T T A Y A Y A
O T O T O A
T A Y B ¥
T Y N A Y A
T L A O A
N I A T T
o A R ¥ BV v
05F | .y \oy v
\ Y
vV ’
_1 L L | L | | L | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Exact, O (h*), O (h°) and O (/") solutions at k =60 and N =128.

4. CONCLUSIONS :

Compact finite difference schemes up to order eight for solving the
inhomogeneous Helmholtz equation in one-dimension with Dirichlet

and/or Neumann boundary conditions, were developed in this paper.
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It is found that a significant improvement in the accuracy of O(k°) over
O(h*) and that of O(k*) over O(h°) and in each of these schemes the

error norm ¢ decreases with the increase of the number of nodes.

However if x =1, O(h*) decreases with the increase of N and O(4°) also

decrease with the increase of N . When & is large, the accuracy of all

schemes in general is poor but reasonable approximations of the solution
for moderate values of & ( k <60) despite the high oscillatory property of
the solution are still available. As & approaches 7/2, all schemes become

sensitive to the value of « and their accuracy is very poor. However, a

reasonable accuracy in O(h*), O(h°®), O(h*) is still attained as long as &

remains respectively within 0.0163, 0.0001266 and 0.0001277 away

from /2.
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