On Propositional Calculus The Soundness and The Completeness of The Non-Formal Systems

(\mathcal{L}_{DSi} , $1 \le i \le 4$)

Huda Sadeg Rhoma
Dept. of Mathematics
Faculty of education-Janzour
Tripoli University

Introduction:

The propositional calculus is a branch of mathematic logic some times called propositional logic, it deals with the study of mathematical and logic, it divides into two mains branches.

- Non Axiomatic logical systems (normal logical systems) .
- Axiomatic logical systems (the axiomatic logic).

In the study of non- Axiomatic logical systems we use a natural deduction system without axioms, which has an empty axiom set. to study and proof

Thermos of the deduction systems DSi, $1 \le i \le 4$

1. Language and definitions:

- 1-1 Atomic proposition: An atomic proposition is a sentence contains only one content either true or falls. The small letters of the alphabet (a,b,c ...etc) standing as atomic proposition.
- 1-2 Operators: symbols denoting the following connectives (or logical operators): ¬, ∧, ∨, →, ↔.
- 1-3 Parentheses: Left and right parentheses: (,), { [(,)] }
- 1-4 Complex proposition: a complex proposition is a composition of more than one atomic proposition with some operators and parentheses, the capital letters of the alphabet (A, B, C) standing as complex proposition.
- 1-5 well formed formula (wff): A well formed formula (wff) is a set of complex propositions is recursively defined by the following rules:
 - Basis: Letters of the alphabet (usually capitalized such as A, , B, ,C, D , etc.) or the Greek alphabet (χ , φ , ψ)are well-formed formulas wffs is recursively defined by the following rules:

- Inductive clause I: If φ is a wff, then $\neg \varphi$ is a wff.
- Inductive clause II: If ϕ and ψ are wffs, then $(\phi \wedge \psi),$ $(\phi \ V \ \psi),$

$$(\phi \rightarrow \psi)$$
, and $(\phi \leftrightarrow \psi)$ are wffs.

1.6 Rules of inferences:

A rule of inference is a valid argument used to deduct a new wff from a previous wff the following are some of rules of inferences:

$$R_1$$
: Simplification $p \wedge q \not\models p$ Simp R_2 : Commutative $p \wedge q \not\models q \wedge p$ Com R_3 : Conjunction $p, q \not\models p \wedge q$ Conj

1.7 Rules of manipulation:

Proposition (1.1): If A and $A \rightarrow B$ are tautologies, then so is B.

Proof. Suppose that A and $A \rightarrow B$ are tautologies, and that B is not. Then

there is an assignment of truth values to the statement letters appearing in A or in B which gives B the value F. But it must give A the value F since A is a tautology, and so it gives $A \rightarrow B$ the value F. This contradicts the assumption that $A \rightarrow B$ is a tautology. Hence B must be a tautology.

Rules of manipulation and substitution.

1.8 Rules of substitution:

Proposition (1.2): Let A be a wff in which the statement letters

 P_1 , P_2 ,......, P_n appear, and let A_1 , A_2 ,...., A_n be any wffs. If A is a tautology then the statement form B, obtained from A by replacing each occurrence of P_i by A_i ($1 \le i \le n$) throughout, is a tautology also, i.e. substitution in a tautology yields a tautology.

Proof: Let A be a tautology and let P_1 , P_2 ,......, P_n be the statement letters appearing in A . Let A_1 , A_2 ,....., A_n be any statement forms. Assign any truth values to the statement letters which appear in A_1 , A_2 ,....., A_n The truth value

that B now takes is the same as that which A would have taken if the values

which A_1 , A_2 ,....., A_n take had been assigned to P_1 , P_2 ,....., P_n respectively, namely T. Hence B takes value T under any assignment of truth values, i.e. B is a tautology.

Now consider the statement form $((A \land A) \to B)$. $(A \land A)$, which appears in this form, is logically equivalent to A (since $((A \land A) \equiv A)$) is a tautology). If were place $(A \land A)$ by A, we get $(A \to B)$. Now $(A \to B)$ is logically equivalent to $((A \land A) \to B)$. Again this is an instance of general proposition substitution

1.9 A proof:

We will use a natural deduction system, which has no axioms; or, equivalently, which has an empty axiom set. Derivations using our calculus will be laid out in the form of a list of numbered lines, with a single wff and a justification on each

line. Any given wff considered to be assumptions and written in the top of the proof. The conclusion will be on the last line. A derivation will be considered complete if every line follows from previous ones by correct application of a rule.

2.0 A Theorem:

The last wff in the proof called a theorem.

2.0 The deduction system DS1

In this section of this paper discussion and proofs of theorems of the non-formal systems DS1,ds2,DS3,DS4 will be presented.

Rules of inferences of DS1:

1.
$$(A \land B) \vdash A$$
 Simplification

2.
$$(A \land B \mid (B \land A))$$
 Commutative

3.
$$\mathcal{A}$$
, $\mathcal{B} \vdash (\mathcal{A} \land \mathcal{B})$ Conjunction

Theorem 2- 1-1: $\mathcal{A} \wedge (\mathcal{B} \supset \mathcal{C}) \models \mathcal{A}$

Proof

1)
$$A \land (B \supset C)$$
 assum.

$$\mathcal{A} \wedge (\mathcal{B} \supset \mathcal{C}) \mid \mathcal{A}$$

Theorem 2-1-2: $(\mathcal{B} \vee C) \wedge \mathcal{E} \models \mathcal{E}$

1) 1.
$$(B \lor C) \land E$$
 assumption

2) 2.
$$\mathcal{E} \wedge (\mathcal{B} \vee C)$$
 1, com.

$$(\mathcal{B} \vee \mathcal{C}) \wedge \mathcal{E} \vdash \mathcal{E}$$

Theorem 2-1-3: $C \wedge (\mathcal{D} \wedge \mathcal{E}) \vdash \mathcal{D}$

Proof:

1)
$$C \wedge (\mathcal{D} \wedge \mathcal{E})$$

assumption

2)
$$(\mathcal{D} \wedge \mathcal{E}) \wedge C$$

1, com.

3)
$$\mathcal{D} \wedge \mathcal{E}$$

2, simp.

3, simp.

$$C \wedge (\mathcal{D} \wedge \mathcal{E}) \mid \mathcal{D}$$

Theorem 2-1-4: $\mathcal{A} \vee \mathcal{D}$, $\mathcal{B} \wedge \mathcal{C} \vdash \mathcal{C} \wedge (\mathcal{A} \vee \mathcal{D})$

Proof:

1.
$$A \lor D$$

assumption

2.
$$\mathcal{B} \wedge \mathcal{C}$$

assumption

3.
$$C \wedge \mathcal{B}$$

2, com.

3, simp.

5.
$$C \wedge (A \vee D)$$

4,1, conj.

$$\mathcal{A} \vee \mathcal{D}$$
, $\mathcal{B} \wedge \mathcal{C} \vdash \mathcal{C} \wedge \mathcal{D}$

Theorem 2-1- $5:(\mathcal{A} \wedge \mathcal{B}) \wedge C \vdash \mathcal{B} \wedge C$

Proof:

1.
$$(A \wedge B) \wedge C$$

assumption

2.
$$\mathcal{A} \wedge \mathcal{B}$$

1, simp.

3.
$$C \wedge (A \wedge B)$$

1, com.

3, simp.

5.
$$\mathcal{B} \wedge \mathcal{A}$$

2, com.

7.
$$\mathcal{B} \wedge \mathcal{C}$$

$$(A \wedge B) \wedge C \vdash B \wedge C$$

The deduction system DS2

Rules of inferences of DS2

1.
$$(\mathcal{A} \vee \mathcal{B})$$
, $\neg \mathcal{A} \models \mathcal{B}$

3.
$$A \vdash (A \lor B)$$

Theorem 2-2-1:-

$$\neg \mathcal{B}, \mathcal{A} \vee \mathcal{B} \models \mathcal{A}$$

Proof

2.
$$A \vee B$$

3.
$$\mathcal{B} \vee \mathcal{A}$$

$$\therefore \neg \mathcal{B}$$
 , $\mathcal{A} \vee \mathcal{B} \models \mathcal{A}$

Theorem 2-2-2:-

$$C \wedge \mathcal{D} \models \mathcal{D} \vee \mathcal{E}$$

Proof

1.
$$C \wedge \mathcal{D}$$

2.
$$\mathcal{D} \wedge \mathcal{C}$$

Disjunctions syllogism(DS)

Commutative

Addition

assumption

assumption

Com

3, 1,DS

assumption

1 , Com

Simp

4. $\mathcal{D} \vee \mathcal{E}$

Conj

 $\therefore \ \mathcal{C} \land \mathcal{D} \models \mathcal{D} \lor \mathcal{E}$

Theorem 2-2-3:-

$$(\mathcal{A} \vee \mathcal{B}) \wedge \neg \mathcal{B} \mid \mathcal{A}$$

Proof

1.
$$(A \lor B) \land \neg B$$

assumption

2.
$$A \vee B$$

1,simp

3.
$$\neg \mathcal{B} \wedge (\mathcal{A} \vee \mathcal{B})$$

1 , Com

3, Simp

5.
$$\mathcal{B} \vee \mathcal{A}$$

2 , Com

5, 4, DS

$$\therefore (\mathcal{A} \vee \mathcal{B}) \wedge \neg \mathcal{B} \mid \mathcal{A}$$

Theorem2-2-4:-

$$\neg (\mathcal{A} \lor \mathcal{B}), (C \supset \mathcal{D}) \lor (\mathcal{A} \lor \mathcal{B}), \neg \mathcal{D} \vdash (C \supset \mathcal{D}) \land (\mathcal{E} \lor \neg \mathcal{D})$$

Proof

1.
$$\neg (A \lor B)$$

assumption

2.
$$(C \supset \mathcal{D}) \lor (\mathcal{A} \lor \mathcal{B})$$

assumption

assumption

4.
$$(A \lor B) \lor (C \lor D)$$

2 , Com

5.
$$C \supset \mathcal{D}$$

2, 1, DS

6.
$$\neg \mathcal{D} \lor \mathcal{E}$$

7.
$$\mathcal{E} \vee \neg \mathcal{D}$$

8.
$$(C \supset \mathcal{D}) \land (\mathcal{E} \lor \neg \mathcal{D})$$

$$\therefore \neg (\mathcal{A} \vee \mathcal{B}), (C \supset \mathcal{D}) \vee (\mathcal{A} \vee \mathcal{B}), \neg \mathcal{D} \vdash (C \supset \mathcal{D}) \wedge (\mathcal{E} \vee \neg \mathcal{D})$$

Theorem 2-2-5:-

$$\neg (\mathcal{B} \supset C) \land \mathcal{A}, (\mathcal{E} \supset \mathcal{D}) \lor (\mathcal{B} \supset C) \vdash (\mathcal{D} \lor \mathcal{A}) \land (\mathcal{E} \supset \mathcal{D})$$

Proof

1.
$$\neg (\mathcal{B} \supset C) \land \mathcal{A}$$

2.
$$(\mathcal{E} \supset \mathcal{D}) \lor (\mathcal{B} \supset \mathcal{C})$$

assumption

3.
$$\neg (\mathcal{B} \supset \mathcal{C})$$

4.
$$\mathcal{A} \wedge \neg (\mathcal{B} \supset \mathcal{C})$$

6.
$$(\mathcal{B} \supset \mathcal{C}) \lor (\mathcal{E} \supset \mathcal{D})$$

7.
$$\mathcal{E} \supset \mathcal{D}$$

5. A

8.
$$A \lor D$$

9.
$$\mathcal{D} \vee \mathcal{A}$$

$$10.(\mathcal{D} \vee \mathcal{A}) \wedge (\mathcal{E} \supset \mathcal{D})$$

1. The deduction system DS3

Rules of inferences of DS3

$$1(A \supset B), A \vdash B$$

Theorem 2-3-1:-

$$A \supset B$$
, $A \vdash B$

Proof

- 1. $A \supset B$

2. A

assumption

assumption

3. B

1,2,MP

 $\therefore A \supset B, A \mid B$

Theorem 2-3-2:-

$$\neg A \supset \neg B$$
, $\neg \neg B$

Proof

1. $\neg A \supset \neg B$

assumption

2. ¬¬B

assumption

3. ¬¬A

1,2,MT

 $\therefore \neg A \supset \neg B, \neg \neg B \vdash \neg \neg A$

Theorem 2-3-3 :-

$$A \wedge (A \supset B) \mid B$$

Proof

1. $A \wedge (A \supset B)$

assumption

2. A

1, Simp.

3. $(A \supset B) \land A$

1, Com.

4. $A \supset B$

3, Simp

5. B

2,4,MP

$$\therefore A \land (A \supset B) \mid B$$

Theorem2-3-4:-

$$(A \supset B) \land (B \supset C), \neg C \vdash \neg A$$

Proof

1.
$$(A \supset B) \land (B \supset C)$$

assumption

3. $A \supset B$

assumption

4.
$$(B \supset C) \land (A \supset B)$$

1, Com

1, Simp

4, Simp

2,5,MT

3,6,MT

D

$$\therefore (A \supset B) \land (B \supset C), \neg C \models \neg A$$

Theorem 2-3-5:-

$$(A \supset B) \land (B \supset C), C \supset D, A \vdash D$$

Proof

1. $(A \supset B) \land (B \supset C)$ assumption

 \supset

- 2. C assumption
- 3. A

assumption

4. $A \supset B$

1, Simp

5. $(B \supset C) \land (A \supset B)$

1, Com

6. $B \supset C$

5, Simp

7. B

3,4,

MP

8. C

6,7,

MP

9. D

2,8,MP

 $\therefore (A \supset B) \land (B \supset C), \neg C \vdash \neg A$

The deduction system DS4

Rules of inferences of DS4

1. $(A \supset B)$, $(B \supset C \mid (A \supset C)$

Hypothetical Syllogism

(HS)

2. $(A \supset B)$, $(C \supset D)$, $(A \lor C \vdash (B \lor D)$

Constructive

Dilemma(CD)

Theorem 2-4-1:- $\mathcal{A} \supset \mathcal{B}$, $C \supset \mathcal{A} \models C \supset \mathcal{B}$

Proof

1) $\mathcal{A} \supset \mathcal{B}$

assumption

2) $C \supset A$

assumption

 $3) C \supset \mathcal{B}$

2,1,HS

 $\therefore \mathcal{A} \supset \mathcal{B}, C \supset \mathcal{A} \models C \supset \mathcal{B}$

Theorem 2-4-2:- $\mathcal{A} \supset \mathcal{B}$, $\mathcal{A} \lor \mathcal{C}$, $\mathcal{C} \supset \mathcal{D} \vdash \mathcal{B} \lor \mathcal{D}$

Proof

1)
$$\mathcal{A} \supset \mathcal{B}$$

assumption

2)
$$A \lor C$$

assumption

assumption

4)
$$\mathcal{B} \vee \mathcal{D}$$

$$\therefore A \supset B, A \lor C, C \supset D \mid B \lor D$$

Theorem 2-4-3:- $\mathcal{D} \supset (\mathcal{A} \supset \mathcal{B})$, $\mathcal{D} \land \mathcal{C}$, $\mathcal{C} \supset (\mathcal{E} \supset \mathcal{A}) \models \mathcal{E} \supset \mathcal{B}$

Proof

1)
$$\mathcal{D} \supset (\mathcal{A} \supset \mathcal{B})$$

assumption

2)
$$\mathcal{D} \wedge \mathcal{C}$$

assumption

3)
$$C \supset (\mathcal{E} \supset \mathcal{A})$$

assumption

2 , *simp*

2 , com

5, simp

3 , 6 , \mathcal{MP}

8)
$$A \supset B$$

1,4,MP

9)
$$\mathcal{E} \supset \mathcal{B}$$

7,8,HS

$$\therefore \mathcal{D} \supset (\mathcal{A} \supset \mathcal{B}), \mathcal{D} \land \mathcal{C}, \mathcal{C} \supset (\mathcal{E} \supset \mathcal{A}) \vdash \mathcal{E} \supset \mathcal{B}$$

Theorem 2-4-4:- A \vee B , (B \supset D) \wedge (A \supset D) | \vdash \neg (D \vee E) \vee (E \vee D)

Proof

assumption

2)
$$(B \supset D) \land (A \supset E)$$

3) $B \supset D$

4)
$$(A \supset E) \land (B \supset D)$$

5) $A \supset E$

7) $(E \lor D) \lor \neg (D \lor E)$

8)
$$\neg (D \lor E) \lor (E \lor D)$$

assumption

2 , *simp*

2, com

4 , *simp*

1, 3, 5, CD

6 , *add*

7, com

$$\therefore A \vee B$$
, $(B \supset D) \wedge (A \supset D) \vdash \neg (D \vee E) \vee (E \vee D)$

Theorem 2-4-5:- $(A \supset B) \land C$, $D \supset E$, $C \supset D \vdash B \lor E$

Proof

1)
$$(A \supset B) \land C$$

2) D⊃E

3) C⊃D

4) $A \supset B$

5) $C \wedge (A \supset B)$

6) C

7) $C \supset \mathcal{E}$

8) C V A

9) E V B

10)B \vee E

assumption

assumption

assumption

1, simp

1 , com

5, simp

2,3,HS

6, add

4,7,8,CD

9 , com

 $\therefore (A \supset B) \land C, D \supset E, C \supset D \vdash B \lor E$

3-The soundness and completeness of the DSi, $1 \le i \le 4$

In this part of the paper we will prove the soundness and the completeness of the non-formal systems (\mathcal{D} Si), $1 \le i \le 4$.

For both systems DS_i we suggest defining a symbol ($\mathscr{D}S_i$) to represent the set of all previous theorems DS_i , in Otherwise:

$$\mathcal{D}$$
Si = { DS_i, 1 \le i \le 4 }.

3-1 Definition: (contradiction).

contradiction is a wff that is \perp under any possible \top assignment of truth values of the wff .

Such propositions are called un-satisfiable. Conversely, a contradiction is $\neg T$.

3-2 Definition(soundness 1).

If \mathscr{D} is a set of theorems, and φ is a single wff, we say a deductive is sound if

$$\mathcal{L}$$
DSi $\mid \varphi \supset \mathcal{L}$ DSi $\mid \varphi$

to mean that φ may be derived from \mathscr{D} Si using only the rules of inference.

Remark.

Every theorem in DS_i , $1 \le i \le 4$, $1 \le i \le 4$ is T

3-3 Definition a model:

A model is a deductive system consisting a set of finite assumption , and a theorem **DSi**.

3-4 Definition.

If \mathcal{D} Si is consistent in deduction systems and if there is no wff φ such that \mathcal{D} Si $\vdash \varphi$ and \mathcal{D} Si $\vdash \neg \varphi$. Otherwise, \mathcal{D} Si is Dinconsistent.

Remark. If \mathscr{D} **Si** is a tautology then ($\neg \mathscr{D}$ **Si**) is not satisfiable.

3-5 Definition.

If \mathscr{D} Si is deductive complete if it is deductive consistent and for every formula φ , \mathscr{D} Si $\vdash \varphi$ or \mathscr{D} Si $\vdash \neg \varphi$.

3 -6 Definition (soundness 2).

If \mathcal{D} Si is a set of wffs, and φ is a single wff, we say a deductive is sound if \mathcal{D} Si is satisfiable then \mathcal{D} Si is deduction consistent.

Remark. An <u>argument</u> is sound if and only if:

- 1. The argument is valid.
- 2. All of its premises are true.

3-7 Definition (completeness 1).

If \mathscr{D} Si is a set of wffs, and φ is a single wff, we say a deductive is sound if:

$$\mathscr{D}$$
Si $\models \varphi \supset \mathscr{D}$ Si $\models \varphi$.

to mean that, for every model \mathcal{M} , if $\mathcal{M} \models \mathcal{D}Si$, then $\mathcal{M} \models \varphi$.

3-8 Definition (completeness 2).

If \mathscr{D} Si is a set of wffs, and φ is a single wff, we say a deductive is sound if \mathscr{D} Si is deduction consistent then \mathscr{D} Si is satisfiable.

3-9 The Completeness Theorem

An inspection of the set \mathcal{D} Si of of formulae shows that every member of \mathcal{D} Si is valid. Note that if for wffs φ and ψ ,

if
$$\models \varphi$$
 and $\models \varphi \supset \psi$ then $\models \psi$.

3-10 Theorem (soundness)

If
$$\mathcal{D}Si \mid \varphi$$
 then $\mathcal{D}Si \not = \varphi$.

3-11 Theorem (Godel Completeness Theorem)

If
$$\mathscr{D}Si \models \varphi$$
 then $\mathscr{D}Si \models \varphi$.

3-12. Proposition.

Theorems 3-11 and 3-12 are equivalent.

Proof.

First, we assume that Theorem 3-11 is true and prove that Theorem 3-12 follows. Then, we assume that Theorem 3-12 is true and prove that Theorem

3-11 follows.

Suppose Theorem 3-11 is true. We want to show that Theorem 3-12 follows.

To that end, suppose that \mathcal{D} Si is consistent. We must show that there is a model \mathcal{M} such that $\mathcal{M} \models \mathcal{D}$ Si.

DSi is consistent. Thus, for every formula ψ , $\mathcal{DSi} \not\models (\psi \land \neg \psi)$. Thus, by the contra positive of Theorem 3.10, it follows that $\mathcal{DSi} \not\models$

 $(\psi \land \neg \psi)$. That is, it is not the case that every model that makes \mathscr{D} Si true also makes $(\psi \land \neg \psi)$ true. Thus, there is a model in which \mathscr{D} Si is true and $(\psi \land \neg \psi)$.

Thus, there is a model in which **DSi** is true, as required.

Thus, Theorem 3.11 entails Theorem 3.12.

Now, suppose Theorem 3.11 holds. And suppose that $\mathscr{D}\mathbf{Si} \models \boldsymbol{\varphi}$. Then there is no model of $\mathscr{D}\mathbf{Si}$, $\neg \boldsymbol{\varphi}$. Thus, by the contra positive to Theorem 3.12, $\mathscr{D}\mathbf{Si}$, $\neg \boldsymbol{\varphi}$ is not consistent. That is,

It follows from this that

$$\mathscr{D}Si \models (\neg \varphi \subset (\psi \land \neg \psi))$$

Thus,

$$\mathscr{D}\mathsf{Si} \models (\neg (\psi \land \neg \psi) \subset \varphi)$$

And, since \mathscr{D} Si $\vdash \neg (\psi \land \neg \psi)$, by modus ponens we have that

as required. Thus, Theorem 3-12 entails Theorem 3-11. Thus, Theorem 3-11 and Theorem 3-12 are equivalent.

References:

1. A. G. Hamilton, Logic for Mathematicians, Cambridge University Press1978,(J. W. Arrowsmith Ltd, Bristol BS32NT)

- 2. Brandon Bennett, A Concise Introduction to the Fundamentals of Classical Logic, School of Computing University of Leeds. January 2002.
- 3. Edmund Burke, Eric Foxley. Logic and its Applications. C.A.R. HOARE SERIESEDITOR. 1996.
- 6. Lucio Tavernini. Foundations of Mathematics: Note 2 (The Propositional Calculus. 2004
- 8. Jan Henzl, weak formal systems, theoretical report, Carbbova University, 2003.
- 9. Jutta Lange, local computational with models in propositional logic, theoretical report, University of Fribourg.
- 10. Marc J. Corbeil, mathematic and logic, theoretical report, August 1997
- 11. Mendelson. Introduction to Mathematical Logic. The university series inundergraduate mathematics.
- 12. Mustafa M. Dagli, Mouds Ponens, Mouds Tollens and Likeness, theoretical report, Middle East Technical University.
- 13. Peirluigi Minari. A Note on Lukasiewicz's three valued Logic
- 14. Rosalie Iemhoff, Provability logic and admissible Rules, theoretical report, Institute for logic, language and computation, University of Van Amsterdam.
- 15. R. Rodrigo Soberano, In Defense of formal logic, theoretical report, University of the Philippines.

16. Ryan Stansifer. Completeness of Propositional Logic as a Program. Department of computer sciences. Florida Institute of technology. March 2001.