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Abstract: 

The semi-analytic method is used to solve the two dimensional 
Laplace's equation. Finite difference schemes up to eighth-order are 
used with respect to one variable.  The analytic solution is then 
obtained for the resulting system of ordinary differential equations in 
the other variable. The method is implemented to solve a problem 
with exact solution. Numerical procedures have been conducted to 
demonstrate the efficiency of the schemes. 
 
Key Words: Semi-analytic method, finite difference method, high 
order finite difference schemes, two dimensional Laplace's equation. 
 
1. Introduction 



Semi-analytic Method With High Order Finite Difference For Laplace's Equation ــــــــــــــــــــــ   

 

University Bulletin – ISSUE No.15 – Vol . 3- 2013 - 6 - 

 
 
 
 
 
 
 
 
 

 

Laplace equation is a second order partial differential equation 
(PDE) that appears in many areas of science and engineering, such as 
electricity, fluid flow, and steady heat conduction. Finite difference 
schemes are often used in the numerical solution of PDE's [5,8]. There 
are many numerical techniques related to the finite difference method 
that are used for obtaining the solution of Laplace equation such as the 
successive over-relaxation method, the implicit alternative direction 
method [1], the method of false transients and the method of lines 
[6,7]. The method of lines (MOL) is a general  technique which has 
found interesting applications in the numerical treatment of PDE's.. 
The basic idea of the MOL ( which is also called semi-discretization 
approach ) is to replace the derivatives of all but one of the 
independent variables in the PDE with algebraic approximations using 
finite difference relationships. Once this is done, the PDE is  
transformed into a system of ordinary differential equations (ODEs) 
which can be solved using initial or boundary value problem 
techniques for ODEs. For the elliptic PDEs, the semi-analytical 
method of lines consists of using difference approximation for the 
second-order derivative in one of the spatial directions followed by 
solving analytically the resulting system of second-order differential 
equations. Subramanian and White [9] used central difference 
approximation for the second-order derivative in one of the spatial 
directions followed by solving analytically the resulting system of 
second-order differential equations  analytically by casting them in 
first-order form and solving the resulting set of first-order equations 
by using the matrix exponential. In this paper we use up to eighth-
order finite difference approximation for the second-order derivative 
in one of the spatial directions and then solve analytically the resulting 
system of second-order differential equations. 
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2.  Semi-Discretization Of Laplace's Equation 

We consider the two dimensional Laplace's equation on the 
rectangle   ( , ) : 0 , 0f fx y x x y y      , with Dirichlet boundary 
conditions; 

    
2 2

2 2 0u u
x y
 

 
 

,   ( , )x y                                                              (1)                                                  

    0(0, ) , 0 fu y u y y                                                                (2a)     

    ( , )f fu x y u ,    0 fy y                                                              (2b) 

    ( ,0) ( )u x g x ,  0 fx x                                                               (2c)     

    ( , ) ( )fu x y k x , 0 fx x         (2d) 

where 0u  and fu  are constants and g  and k  are given functions. 

      We discretize along the x  axis using a uniform grid of the interval 

[0, ]fx  with  uniform segments, so that the grid spacing is fxh x
N

    

and the mesh points are 1 2 10 ... N N fx x x x x      , where  

1 1ix x ih   , 1,2,...,i N . We let  ( ) ( , ) , 1: 1i i iu u y u x y i N     so 
that iu  denotes the solution of problem (1)-(2) at ix x  and y , 

2 2

2 2 ( , )i i
i

u u x y
x x

 


 
 denotes its second derivatives with respect to x at 

( , )ix y . We shall also let  ( )i ig g x  and ( )i ik k x  .   
       We shall use the second order ( 2( )O h ), fourth order ( 4( )O h ), sixth 
order ( 6( )O h ), and eighth order ( 8( )O h ) difference approximations of 
the second derivative with respect to x at the mesh nodes. For the 



Semi-analytic Method With High Order Finite Difference For Laplace's Equation ــــــــــــــــــــــ   

 

University Bulletin – ISSUE No.15 – Vol . 3- 2013 - 8 - 

 
 
 
 
 
 
 
 
 

 

second, fourth, sixth and eighth order approximations; the internal 
nodes are respectively 2,...,i N , 3,..., 1i N  , 4,..., 2i N   and 

5,..., 3i N  . The rest of the nodes in each case are boundary nodes. 
The coefficients of the difference approximations of order 2L  for the 
Pth derivative at the internal nodes may be calculated from : 

( ) 2 1( )
L

P L
i k i kP

k L
u O h C u

h 


   , 

and the coefficients  of the boundary nodes  2 ,  3,  4  ( N ,  N-1,  N-2 ) 
may be calculated from : 

( ) 2 1( )
L M

P L
i k i kP

k L M
u O h C u

h




 

   , with 3, 2,1M   ( 3, 2, 1M     ) .  

 The coefficients of the difference approximations of 2( )O h , 4( )O h , 
6( )O h  and 8( )O h  for the second derivative at the internal nodes are 

given  in table 1. The coefficients of the difference approximations of  
8( )O h  for the second derivative at the boundary nodes are given in 

table 2. For those of 2( )O h , 4( )O h  and 6( )O h , see [2,3]. 
     We now use finite difference approximation  of  8( )O h  to estimate 
the right hand side of  

       
2 2

2 2

u u
y x
 

 
 

.                                                                         (3) 

Using table 1 and table 2, the following  system of ODEs in the 
variable y  is obtained. 

2

2 2

1
5040

U MU
y h





,                                                     (4) 

where 1 2 1 2 3[ , ,..., ] [ , ,..., ]T T
N NU U U U u u u  ( T denotes the transpose ), 

the ( 1) ( 1)N N    matrix M is constructed from table 1 and table 2. 
Note that 1 0u u   and 1N fu u  . The matrix M  has distinct eigenvalues 
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, 1,2,..., 1ie i N   and therefore is similar to a diagonal matrix 
 1 2 1, , ..., ND diag e e e   [4]. So there exists an invertible matrix P  such 

that         1P MP D                                                 (5)   

Let  the vector 1 2 1[ , ,..., ]TNV V V V   be given by  1V P U  or  

       U PV                                                                  (6)  

Substituting (6) into (4), multiplying by 1P   and using (5), we obtain 

       
2

2 2

1 0
5040

V DV
y h


 


.                                                                (7) 

If we let 2
25040

i
i

e
h

  , system (7) can be cast as 

 
2

2 0, 1,2,..., 1i
i i

V V i N
y


   


                                                         (8) 

For each i , equation (8) has the general solution 

   ( ) cosh( ) sinh( )i i i i iV y A y B y                                                      (9) 

where iA  and iB  are arbitrary constants.  

We set 2 3[ , ,..., ]TNG g g g , 2 3[ , ,..., ]T
NK k k k , 1 2 1[ , ,..., ]TNA A A A  , 

1 2 1[ , ,..., ]T
NB B B B  , 1 *( )ijP P  , 

1 2 1[sinh( ),sinh( ) ,...,sinh( )]Ts f f N fS y y y    , 

1 1 2 2 1 1[ cosh( ), cosh( ) ,..., cosh( )]T
ac f f N N fS A y A y A y    , and

1 1 2 2 1 1[ sinh( ), sinh( ) ,..., sinh( )]T
bs f f N N fS B y B y B y    .  

Applying the boundary conditions (2c) , we have 
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0 0| |y yG U PV PA    , or  1A P G . So that  

       
1

*
1

1

N

i ij j
j

A P g





                                                       (10) 

Applying the boundary conditions (2d) , we have 

 | |
f fy y y y ac bsK U PV P S S     , or 1

bs acS P K S  . Or 

1
*

1
1

1 cosh( )
sinh( )

N

i ij j i i f
ji f

B P K A y
y









 
  

 
 .                      (11) 

With these expressions for iA  and iB  in (10) and (11), ( )iV y  in (9) is 
completely determined. The solution of problem (1)-(2) is then 
determined from (6). 

3. Test Problems and Numerical Results 
       An example for which the exact solution is known, is now used to 
test the performance of the method described above for solving 
problem (1)-(2). The computations were performed in a MATLAB 
environment using version 7.6 and was executed on Pentium(R) at 
1.86 GHz, RAM 1 GB. The computed solutions and the exact solution 
are compared with the  use of the two norms; the 2 -norm and  the  -
norm of the error vector, defined respectively for 1 2( , ,..., )Me e e e  as 

 2

2
1

M

i
i

e e


   and  
1

i
i M

e eMax  
 . 

Example . 

 
2 2

2 2 0u u
x y
 

 
 

,   0 1, 0 1x y                                                                                                          
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    (0, ) 0u y  ,     0 1y                                                                                      

    (1, ) 0u y  ,     0 1y                                                                                      

    ( ,0) 0u x  ,     0 1x                                                                   

    ( ,1) ( ) sin( x)u x k x   ,  0 1x  , 

for which the exact solution is  sinh( )sin( x)( , )
sinh( )

yu x y  


 . 

        Table 3 provides comparison of exact and numerical solutions for 
various values of points ( , )x y  and various values of number of nodes 
N . Table 4 contains error norms 2  and   using schemes of 2( )O h , 

4( )O h , 6( )O h  and 8( )O h  for 16,32,64N  . Table 5  Shows the effect of 
increase of number of nodes on the 2  error norm for various 
difference orders.  This is depicted in  Figure 1. At a fixed number of 
Nodes, the accuracy of the numerical solution increases with the 
increase of the order of the finite difference. For a fixed finite 
difference approximation, the accuracy of the numerical solution 
increases with the increase of node numbers  (decreases of the step h ) 
up to a certain  value of N ( a certain value of h ), after which the 
accuracy of the numerical solution starts to fluctuate. This happens 
when the truncation error is of 8( )O h  with 1 72h   (i.e.  (1 015)O e  ) 
as shown in figure 2. 
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Table 1. The coefficients of the difference approximations of 
2( )O h , 

4( )O h , 
6( )O h  and  

8( )O h  for the 
second derivative at the internal  nodes. 

coefficients Order 2 Order 4 Order 6 Order 8 

4C   -- -- -- -1/560 

3C   -- -- 1/90 8/315 

2C   -- -1/12 -3/20 -1/5 

1C   1 4/3 3/2 8/5 

0C  -2 -5/2 -49/18 -205/72 

1C  1 4/3 3/2 8/5 

2C  -- -1/12 -3/20 -1/5 

3C  -- -- 1/90 8/315 

4C  -- -- -- -1/560 

Table 2. The coefficients of the difference approximations of 8( )O h  for the second 
derivative at the boundary nodes . 

 Node 2 Node 3 Node 4 Node N-2 Node N-1 Node N 

4C   -- -- -- -- -- -- 

4C   -- -- -- -- -- -29/560 

4C   -- -- -- -- 47/5040 599/1260 

4C   -- -- -- -1/560 -3/35 -39/20 

3C   -- -- 47/5040 1/70 7/20 47/10 

2C   -- -29/560 -19/140 -7/180 -37/45 -529/72 

1C   363/560 39/35 29/20 -1/20 9/8 153/20 

0C  8/315 -331/180 -118/45 11/8 1/5 -83/20 

1C  -83/20 1/5 11/8 -118/45 -331/180 8/315 

2C  153/20 9/8 -1/20 29/20 39/35 363/560 

3C  -529/72 -37/45 -7/180 -19/140 -29/560 -- 

4C  47/10 7/20 1/70 47/5040 -- -- 

5C  -39/20 -3/35 -1/560 -- -- -- 

6C  599/1260 47/5040 -- -- -- -- 

7C  -29/560 -- -- -- -- -- 
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Table 3. Exact and numerical solutions in examples 1 for various values of points ( , )x y  

with 16,32,64N  . 

N x y    Exact 2( )O h  
4( )O h  

6( )O h  
8( )O h  

16 0.0625  0.003338243620 0.003349732454 0.003337815328 0.003338257526 0.003338243188 
0.3125     0.082596669301 0.082842437863 0.082595281613 0.082596738910 0.082596667204 
0.5625    0.241329291897 0.241825668546 0.241328005808 0.241329396292 0.241329288904 
0.8125     0.306964259653 0.307245113211 0.306959243728 0.306964415071 0.306964254580 

32 0.0313 0.0008345738267 0.000835294630 0.000834567062 0.000834573885 0.000834573826 
0.2813 0.0671429695415 0.067194365732 0.067142956765 0.067142970142 0.067142969536 
0.5313 0.2205270225890 0.220647611234 0.220527057529 0.220527023586 0.220527022582 
0.7813 0.3173184059796 0.317402825737 0.317318325639 0.317318407334 0.317318405968 

64 0.0156 0.00020864365858 0.00020868875172 0.0002086435538 0.0002086436588 0.0002086436585 
0.2656 0.05997325663209 0.05998488622296 0.0599732580035 0.0599732566373 0.0599732566320 
0.5156 0.20992479429536 0.20995433082845 0.2099248000641 0.2099247943050 0.2099247942953 
0.7656 0.319572323588884 0.319595057793893 0.31957232520610 0.3195723236008 0.3195723235888 

Table 4. Error norms 2  and   using differences of 2( )O h , 4( )O h , 6( )O h  and 8( )O h  

for 16,32,64N  . 

N  Norm 2( )O h  
4( )O h  

6( )O h  
8( )O h  

16 2  0.0043 4.9595e-005 1.7051e-006 5.2755e-008 

   0.0057 5.8693e-005 2.3141e-006 7.1028e-008 

32 2  0.0022 3.2812e-006 3.2608e-008 2.7298e-010 

   0.0028 4.0766e-006 4.5277e-008 3.6827e-010 

64 2  0.0011 2.6051e-007 5.8180e-010 2.2423e-012 

   0.0014 3.6359e-007 8.2934e-010 3.0312e-012 

Table 5. The effect of increase of the number of nodes on the 2  error norm for various 
difference orders. 

N  Norm 2( )O h  
4( )O h  

6( )O h  
8( )O h  

16 2  0.0043 4.9595e-005 1.7051e-006 5.2755e-008 

24 2  0.0029 1.0169e-005 1.7173e-007 2.5344e-009 

32 2  0.0022 3.2812e-006 3.2608e-008 2.7298e-010 

40 2  0.0017 1.3877e-006 8.9226e-009 4.7256e-011 

48 2  0.0014 7.0453e-007 3.0911e-009 1.1486e-011 

56 2  0.0012 4.0802e-007 1.2618e-009 4.0335e-012 

64 2  0.0011 2.6051e-007 5.8180e-010 2.2423e-012 
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N  Norm 2( )O h  
4( )O h  

6( )O h  
8( )O h  

72 2  9.6259e-004 1.7880e-007 2.9405e-010 5.4381e-013 

80 2  8.6633e-004 1.2947e-007 1.6218e-010 3.0485e-012 

88 2  7.8757e-004 9.7556e-008 9.3879e-011 5.1071e-012 

96 2  7.2194e-004 7.5775e-008 6.1131e-011 2.9810e-012 

104 2  6.6640e-004 6.0252e-008 2.7235e-011 5.5936e-012 

112 2  6.1880e-004 4.8821e-008 2.2381e-011 1.6472e-012 

120 2  5.7755e-004 4.0184e-008 1.1428e-011 1.8957e-012 

128 2  5.4145e-004 3.3508e-008 7.9295e-012 1.2086e-011 

 

 
Fig.1 The effect of increase of number of nodes on the 2  error norm 
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Fig.2 The effect of increase of number of nodes on the 2  error norm for 8( )O h  

 
4. Conclusions 

     In this paper the two-dimensional Laplace equation is dealt with using 

the semi-analytic method. Finite difference approximation for the second-
order derivative in one of the spatial directions up to eighth-order is used 

and then we solved analytically the resulting system of second-order 
differential equations. Comparisons of the results obtained from these 
schemes with exact solution showed that these schemes provide an 
efficient high accuracy methods for solving the problem.  
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