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Abstract:

The semi-analytic method is used to solve the two dimensional
Laplace's equation. Finite difference schemes up to eighth-order are
used with respect to one variable. The analytic solution is then
obtained for the resulting system of ordinary differential equations in
the other variable. The method is implemented to solve a problem
with exact solution. Numerical procedures have been conducted to
demonstrate the efficiency of the schemes.
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1. Introduction
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Laplace equation is a second order partial differential equation
(PDE) that appears in many areas of science and engineering, such as
electricity, fluid flow, and steady heat conduction. Finite difference
schemes are often used in the numerical solution of PDE's [5,8]. There
are many numerical techniques related to the finite difference method
that are used for obtaining the solution of Laplace equation such as the
successive over-relaxation method, the implicit alternative direction
method [1], the method of false transients and the method of lines
[6,7]. The method of lines (MOL) is a general technique which has
found interesting applications in the numerical treatment of PDE's..
The basic idea of the MOL ( which is also called semi-discretization
approach ) is to replace the derivatives of all but one of the
independent variables in the PDE with algebraic approximations using
finite difference relationships. Once this is done, the PDE is
transformed into a system of ordinary differential equations (ODEs)
which can be solved using initial or boundary value problem
techniques for ODEs. For the elliptic PDEs, the semi-analytical
method of lines consists of using difference approximation for the
second-order derivative in one of the spatial directions followed by
solving analytically the resulting system of second-order differential
equations. Subramanian and White [9] used central difference
approximation for the second-order derivative in one of the spatial
directions followed by solving analytically the resulting system of
second-order differential equations analytically by casting them in
first-order form and solving the resulting set of first-order equations
by using the matrix exponential. In this paper we use up to eighth-
order finite difference approximation for the second-order derivative
in one of the spatial directions and then solve analytically the resulting
system of second-order differential equations.
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2. Semi-Discretization Of Laplace's Equation
We consider the two dimensional Laplace's equation on the
rectangle Q={(x,y):0<x <x,,0<y <y, }, with Dirichlet boundary

conditions;
2;”2+2y2”2=0, (x,y)eQ (1)
u(0,y)=u,, 0<y<y, (2a)
ulx,,y)=u,, 0<y<y, (2b)
u(x,00=g(x), 0<x <x, (2¢)
u(x,y,)=k(x), 0<x <x, (2d)

where u, and u, are constants and g and & are given functions.

We discretize along the x axis using a uniform grid of the interval

[0,x,] with uniform segments, so that the grid spacing is 4 = Ax :%L

and the mesh points are 0=x <x,<..<x,<x,, =x,, Wwhere
X, =x,+ih,i=L2,.,N. We let u,=u,(y)=u(x,,y),i=1:N+1 so
that u, denotes the solution of problem (1)-(2) at x =x, and y,
2 2
aau;’ = aau;’ (x,,y) denotes its second derivatives with respect to x at
X X
(x,,y). Weshall also let g, =g(x,) and k, =k(x,) .
We shall use the second order (O (%?)), fourth order (O (h*)), sixth
order (O(%°)), and eighth order (O(#*)) difference approximations of

the second derivative with respect to x at the mesh nodes. For the
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second, fourth, sixth and eighth order approximations; the internal
nodes are respectively i=2,...N, i=3,..N-1, i=4,.,N-2 and
i =5,..,N =3. The rest of the nodes in each case are boundary nodes.

The coefficients of the difference approximations of order 2L for the
P" derivative at the internal nodes may be calculated from :

1 L
ui(P)+O(h2L):h_P Z Ckqu R
k—1L

and the coefficients of the boundary nodes {2, 3, 4} ({N, N-1, N-2})

may be calculated from :

L+M
ui(P)+O(h2L):hLP Z Ckui+k 9W1th M :3’2’1 (M :_3’_2’_1) )
k=—L+M

The coefficients of the difference approximations of O(4%), O(h?),
O(h®) and O(h®) for the second derivative at the internal nodes are
given in table 1. The coefficients of the difference approximations of
O(h*) for the second derivative at the boundary nodes are given in
table 2. For those of O(4#%), O(h*) and O(r°), see [2,3].
We now use finite difference approximation of O(%*) to estimate

the right hand side of

o’u o’u

oy’ - Sl (3)
Using table 1 and table 2, the following system of ODEs in the
variable y 1s obtained.

2 1

Zylé “Soa0n 1Y “)
where U =[U,U,,..,.U, T =[u,,us,...,u, ] ( T denotes the transpose ),

the (N —1)x(N —1) matrix M is constructed from table 1 and table 2.

Note that u, =u, and u,, =u, . The matrix M has distinct eigenvalues
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e, i=12,.,N-1 and therefore is similar to a diagonal matrix

D =diag (e,.e,,....,e_;) [4]. So there exists an invertible matrix P such

that P'MP=D (5)
Let the vector vV =, V,,..V, I begivenby V =P'U or

U=PV (6)
Substituting (6) into (4), multiplying by P~ and using (5), we obtain

oV 1

DV =0. 7
oy>  5040h° )

Ifwe let u’ = 50:2)112 , system (7) can be cast as

2
aayV; _up, =0, i=12,..N I )

For each i , equation (8) has the general solution
Vi ) =4, COSh(,uiy ) +B, Sinh(,uiy) (9)
where 4, and B, are arbitrary constants.

We set G =[g,,g5,-8y] >, K=[kykskyl, A=[4,4,,...4, T,
B =[B,,B,,...,B, T, P'=(P)),
S, = [sinh(ylyf ),sinh(,uzyf ),...,sinh(,uN_lyf )7,

S, =[4,cosh(uy ), 4, cosh(i,y ;) ,..., Ay cosh(uy vy )T, and
S, =B, sinh(,ulyf ),B, sinh(,uzyf )5 By sinh(,uN_lyf ).

Applying the boundary conditions (2¢) , we have
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G=U| =PV | _,=PA,or 4=P'G.So that
N -1 .
4, :ZPI.‘/‘ng (10)
j=l

Applying the boundary conditions (2d) , we have

K=U|_, =PV |_ =P{S,+S,},0orS, =P'K-S,.Or

1 N E3
=N P'K., —A cosh(uy, ). 11
i Slnh(‘[,llyf ) {]] ij Jj+l i cos (lLtlyf )} ( )

With these expressions for 4, and B, in (10) and (11), V,(y) in (9) is
completely determined. The solution of problem (1)-(2) is then
determined from (6).

3. Test Problems and Numerical Results

An example for which the exact solution is known, is now used to
test the performance of the method described above for solving
problem (1)-(2). The computations were performed in a MATLAB
environment using version 7.6 and was executed on Pentium(R) at
1.86 GHz, RAM 1 GB. The computed solutions and the exact solution
are compared with the use of the two norms; the ¢*-norm and the /¢*-
norm of the error vector, defined respectively for e =(e,e,,....e,,) as

M

el = (ke and. Jl, = pa .|

1<i <M

Example .

o’u N o’u
ox® oy’

=0, O<x<l, O<y<l
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u0,y)=0, O<y<l
ulLy)=0, O<y<l
u(x,00=0, 0<x<l1
u(x,)=k(x)=sin(rx), 0<x <1,

sinh(zy )sin(7x)

for which the exact solution is u(x,y)= _
sinh(7)

Table 3 provides comparison of exact and numerical solutions for
various values of points (x,y) and various values of number of nodes

N . Table 4 contains error norms ¢*> and ¢ using schemes of O(h%),
oh"), O(h®) and O(h®) for N =16,32,64. Table 5 Shows the effect of

increase of number of nodes on the ¢* error norm for various
difference orders. This is depicted in Figure 1. At a fixed number of
Nodes, the accuracy of the numerical solution increases with the
increase of the order of the finite difference. For a fixed finite
difference approximation, the accuracy of the numerical solution
increases with the increase of node numbers (decreases of the step 4 )
up to a certain value of N ( a certain value of %), after which the
accuracy of the numerical solution starts to fluctuate. This happens
when the truncation error is of O(h*) with 7 ~1/72 (i.e. =O(le -015))

as shown in figure 2.
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2 4
Table 1. The coefficients of the difference approximations of 0 (l’l ) , 0 (l’l ) , 0 (l’l 6) and O (l’l 8) for the

second derivative at the internal nodes.

coefficients Order 2 Order 4 Order 6 Order 8
C, - - - -1/560
C, - - 1/90 8/315
C, - -1/12 -3/20 -1/5
C, 1 4/3 3/2 8/5
C, -2 -5/2 -49/18 -205/72
C, 1 4/3 3/2 8/5
C, - -1/12 -3/20 -1/5
C, - - 1/90 8/315
C, - - - -1/560

Table 2. The coefficients of the difference approximations of O (4*) for the second
derivative at the boundary nodes .

Node 2 Node 3 Node 4 Node N-2 Node N-1 Node N
C, - - - - - -
C, - - - - - -29/560
C, - - - - 47/5040 | 599/1260
C, - - - -1/560 -3/35 -39/20
C, - - 47/5040 1/70 7/20 47/10
C, - -29/560 -19/140 -7/180 -37/45 -529/72
C, 363/560 39/35 29/20 -1/20 9/8 153/20
C, 8/315 -331/180 -118/45 11/8 1/5 -83/20
C, -83/20 1/5 11/8 -118/45 -331/180 8/315
C, 153/20 9/8 -1/20 29/20 39/35 363/560
C, -529/72 -37/45 -7/180 -19/140 -29/560 -
C, 47/10 7/20 1/70 47/5040 - -
C, -39/20 -3/35 -1/560 - - -
C, 599/1260 |  47/5040 - - - -
C, -29/560 - - - - -
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Table 3. Exact and numerical solutions in examples 1 for various values of points (X,) )

with N =16,32,64.

N X=y= | Exact O(hZ) O(h4) O(hﬁ) O(hg)

16 | 0.0625 0.003338243620 0.003349732454 0.003337815328 0.003338257526 0.003338243188
0.3125 0.082596669301 0.082842437863 0.082595281613 0.082596738910 0.082596667204
0.5625 0.241329291897 0.241825668546 0.241328005808 0.241329396292 0.241329288904
0.8125 0.306964259653 0.307245113211 0.306959243728 0.306964415071 0.306964254580

32 | 0.0313 0.0008345738267 0.000835294630 0.000834567062 0.000834573885 0.000834573826
0.2813 0.0671429695415 0.067194365732 0.067142956765 0.067142970142 0.067142969536
0.5313 0.2205270225890 0.220647611234 0.220527057529 0.220527023586 0.220527022582
0.7813 0.3173184059796 0.317402825737 0.317318325639 0.317318407334 0.317318405968

64 | 0.0156 0.00020864365858 0.00020868875172 0.0002086435538 0.0002086436588 | 0.0002086436585
0.2656 0.05997325663209 0.05998488622296 0.0599732580035 0.0599732566373 | 0.0599732566320
0.5156 0.20992479429536 0.20995433082845 0.2099248000641 0.2099247943050 | 0.2099247942953
0.7656 0.319572323588884 | 0.319595057793893 | 0.31957232520610 | 0.3195723236008 | 0.3195723235888

Table 4. Error norms ¢ and (* using differences of O (hz) , 0 (h4) , 0 (hé) and O (h 8)
for N =16,32,64.

N Norm O(h?) O(h*) O(h®) O(h*)
16 62 0.0043 4.9595¢-005 1.7051e-006 5.2755e-008
[‘o 0.0057 5.8693e-005 2.3141e-006 7.1028e-008
32 62 0.0022 3.2812¢-006 3.2608e-008 2.7298e-010
[‘o 0.0028 4.0766¢-006 4.5277¢-008 3.6827¢-010
64 62 0.0011 2.6051e-007 5.8180e-010 2.2423e-012
[‘o 0.0014 3.6359¢-007 8.2934¢-010 3.0312¢-012

Table 5. The effect of increase of the number of nodes on the ¢ 2 error norm for various

difference orders.

N Norm O(h?) O(h*) O(h®) O(h*)

16 72 0.0043 4.9595¢-005 1.7051e-006 5.2755¢-008
24 /2 0.0029 1.0169¢-005 1.7173¢-007 2.5344¢-009
32 72 0.0022 3.2812¢-006 3.2608¢-008 2.7298¢-010
40 /2 0.0017 1.3877¢-006 8.9226¢-009 47256011
48 72 0.0014 7.0453¢-007 3.0911¢-009 1.1486¢-011
56 /2 0.0012 4.0802¢-007 1.2618¢-009 4.0335¢-012
64 72 0.0011 2.6051¢-007 5.8180¢-010 2.2423¢-012
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2 4 6 8
N Norm O(h ) O(h ) O(h ) O(h )
72 62 9.6259¢-004 1.7880e-007 2.9405e-010 5.4381e-013
80 62 8.6633e-004 1.2947¢-007 1.6218e-010 3.0485¢e-012
88 62 7.8757e-004 9.7556€-008 9.3879¢-011 5.1071e-012
96 62 7.2194e-004 7.5775e-008 6.1131e-011 2.9810e-012
104 62 6.6640e-004 6.0252¢-008 2.7235e-011 5.5936e-012
112 62 6.1880e-004 4.8821e-008 2.2381e-011 1.6472¢-012
120 62 5.7755e-004 4.0184e-008 1.1428e-011 1.8957e-012
128 62 5.4145e-004 3.3508e-008 7.9295e-012 1.2086e-011
'2 T T T T T T
4t -
6 i
& S
-
= \
S -8r \ b
S \
g \
= \
\
N
10+ N i
~N
- Ve
o(h"2) T T T~
A2 O(h™) ~_~ B
o(h"6)
—oe)
-14 I I I I I I
0 20 40 60 80 100 120 140
number of nodes N
. . 2
Fig.1 The effect of increase of number of nodes on the ¢~ error norm
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Fig.2 The effect of increase of number of nodes on the /> error norm for O (/")

4. Conclusions

In this paper the two-dimensional Laplace equation is dealt with using
the semi-analytic method. Finite difference approximation for the second-
order derivative in one of the spatial directions up to eighth-order is used
and then we solved analytically the resulting system of second-order
differential equations. Comparisons of the results obtained from these
schemes with exact solution showed that these schemes provide an
efficient high accuracy methods for solving the problem.
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