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Abstract : 
Modelling played an important role in simulation, optimisation, and 

control of reverse osmosis (RO) desalination processes. Water and salt 
permeability of the membrane are one of important membrane properties 
that affect optimal design and operation of RO processes. Therefore, 
estimation of membrane water and salt permeability is significant.  

In this work, neural networks (NNs) based correlation has been 
developed based on the actual RO fouling data over one year of operation 
and used for estimating the membrane permeability decline factors. It is 
found that the NNs based correlations can predict the experimental water 
and salt permeability very closely. 
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Due to advancement in the microcomputer, plant automation 
becomes reliable means of plant maintenance. NNs based correlations 
(models) can be updated in terms of new sets of weights and biases for the 
same architecture or for a new architecture reliably with new plant data. 

Keywords: Reverse osmosis; Spiral wound module; Seasonal 
changes; Fouling; Membrane permeability; Neural network techniques 

1- Introduction : 
The scarcity of fresh water resources and the growth of population, 

industry and agriculture have increased the reliance on water production 
using desalination technology. Some countries such as gulf areas rely 
completely on desalinated water [1]. Therefore, much attention is being 
paid to seawater and brackish water desalination technologies including 
Reverse Osmosis (RO) in attempts to improve the reliability and the 
performance of freshwater production processes.  

Thermal and RO processes are, by far, the major desalination 
systems used now-a-days. RO process is less energy intensive and makes it 
most cost efficient [2]. For instance, energy consumption for seawater RO 
desalination is about one-half of that of multiple effect evaporator process 
[3].  

Recently, seawater desalination by RO has been the main source of 
drinking water supply in many regions that have freshwater lake [4]. RO 
membranes used in sea water desalination are capable of producing good 
water quality by removing most of the salts and some other contaminants 
from water sources.  

The cost of fresh water produced by membrane treatment has shown 
dramatic reduction trend. This remarkable progress has been made mainly 
through two aspects, huge improvements in membrane material and 
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incorporation of the energy recovery devices in RO systems [4] which 
significantly reduce the energy requirements. 

The mathematical modelling of RO systems plays an important role 
in operation and design of the RO process. Prediction of RO membrane 
performance under different operating conditions is necessary to optimize 
the design and operation of membrane separation process. The most costly 
design and operation problem in RO separation process are due to fouling 
formation on the membrane layer which significantly deteriorates the 
performance of the membrane separation process. 

Neural networks (NNs) are modelling tools able to solve linear and 
non-linear multivariate regression problems with some desired accuracy 
[5]. Moreover, NNs methodology does not need any governing equations 
with assumptions to describe the process under study. A number of studies 
have been reported on the modelling, simulation and optimization of 
pressure-driven membrane systems using NNs tool [6,7,8]. Abbas and Al-
Bastaki [9] developed NNs model to predict the performance of a RO 
experimental setup. The model considers ranges of operating conditions as 
input to the NNs model that include the feed pressure, temperature and salt 
concentration to predict the water permeate rate. A neural network-based 
modelling approach with back-propagation was investigated by Libotean et 
al. [10]. Operation data of normalized permeate flux and salt passage were 
used as input variables to develop NNs model for estimating RO plant 
performance.  

Predictive models for simulation and optimization of RO 
desalination pilot plant based on both Response Surface Methodology 
(RSM) and Artificial Neural Network (ANN) models have been developed 
by Khayet et al. [11]. They found that RSM was unable to develop a global 
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model to predict the RO performance while ANN approach provides a 
global model in a wide range of feed salt concentration.  

Neural networks (NNs) tool also used in optimization of RO 
processes. For example, Lee et al. [5] have developed NNs models using 
one-year real operational data for the prediction of the performance of a 
Fujairah RO desalination plant. The input parameters of the NNs model 
consists of feed temperature, seawater salinity, operating pressure, feed 
flow rate, and operation time while the output parameters were permeate 
salinity and production. The NNs model then used to determine the 
temperature control to optimize the operation of RO plant. 

NNs based correlation is developed in this work based on the actual 
water and salt permeability data to estimate the performance decline 
factors. Annual seawater temperature variation is considered in the NNs 
model. 

2- Development of Neural Network Model  
NNs based correlations are developed to estimate the water and salt 

permeability coefficients within one year of operation. Seawater 
temperature annual variation is also included in NN model.  

2.1- Neural Network Architecture 
The neural network topology in which the inputs and outputs of the 

neurons are organized is known as architecture of the neural network. A 
typical neural network consists of an input layer, one or more hidden 
layers; output layer and transfer functions. Multi-layer feed-forward neural 
network is the most common method of implementing NNs models as it is 
more able to deal effectively with the complex nonlinear problems [11].  

Commonly neural networks are adjusted, or trained so that a 
particular input leads to a specific target output. The connections are made 
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between the neurons of adjacent layers allowing the neuron to receive a 
signal from a neuron in the preceding layer and allow it to transmit signals 
to neurons in the immediately succeeding layers.  

The processing neuron receives a number of inputs (ai). A weighted 
sum of these signals is calculated, using the neuron’s assigned weights (wi), 
which is transferred by the transfer function to produce output signal, that 
is send to the neurons in the succeeding layer. Also a bias neuron (b) 
supplies an invariant output which is connected to each neuron in the 
hidden and output layers. The performance of NNs models are strongly 
influenced by the choice of the input-output function, transfer functions and 
the weights. Figure 1 shows the main categories of transfer functions.  

 

 
Figure 1 Different Neuron transfer Functions: (a) linear (b) Sigmoid (c) hyperbolic (d) 

Gaussian [6] 
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2.2 Estimation of water and salt permeability coefficients: 
Data collected from one stage RO desalination plant utilizing spiral 

wound modules was used in this study [12]. Data for one year were 
selected from the published data and used in neural network model. 

Normalization the experimental data is required to avoid the effects 
of different operating conditions. The variables such as water fluxes and 
membrane permeability are commonly normalized with their initial values 
[13]. The experimental membrane permeability data obtained for spiral 
wound membranes [12] are normalized using their initial permeability 
coefficients. The resulting normalized membrane permeability decline 
factors of water and salt ( f

wA ; f
sA ) (Appendix I) are used to represent the 

membrane permeability decline.  
NNs tool is used to develop two correlations for estimating water and 

salt permeability decline factors ( f
wA ; f

sA ) for a given seawater temperature 
profile and operation time. The seasonal variation of seawater temperature 
is embedded in the predicted permeability decline factors. A four layered 
NNs architecture shown in Figure 2 is used in this propose. In the proposed 
NNs based correlations, optimal network architecture (number of hidden 
layers and neurons in each layer) is chosen for each network by trial and 
error approach (multiple runs). 
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Figure 2 Four layer neural network 

 
Two NNs models are developed to estimate water and salt 

permeability decline factors ( f
wA ; f

sA ), each model consists of two neurons 
in the input layer, two hidden layers containing four and two neurons 
respectively, and one neuron in the output layer. The outputs of hidden and 
output layers are determined as follow: 
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In general for the 3rd layer, the value of jth neuron can be given as: 
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Where 2
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In general for the 2nd layer, the value of jth neuron can be given as: 
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The transfer functions which describes the relationship between 
output layer and input layer of each neuron are hyperbolic tangent function 
( 2

jf , 3
jf =tanh) between the input and the first hidden and between the two 

hidden layers. While the linear function ( 4
jf =1) is used between the last 

hidden layer and the output layer  
The raw data collected from the field are normally scaled into an 

appropriate range (between zero and one or one and negative one) [14]. 
Appendix (I) shows experimental data collected from Pais et al. [12]. The 
data are scaled before used as input data. The relations used in data scale up 
are as follow: 
Time 
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Salt permeability   
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Where the subscripts mean, std and scal refer to average, standard 
deviation and scale up variables, respectively.  

Two NNs models are solved in order to determine correlations which 
can be used to calculate water and salt permeability decline factors ( f

wA ; 
f
sA ). The output values from the NNs are rescaled to find the value in 

original units. The experimental data was divided into three sets: a set of 
50% of the data are selected for training , 25 %  of the data for validation 
and last set (25 %) is selected for testing. 

The back propagation algorithm is used for training a multilayer feed 
forward neural network [14]. The Neural Network Toolbox available in 
MATLAB software is implemented in this study to design and train the 
data. 

The value of neurons (aj) at the first, second or third layer can be 
expressed by the following equations: 
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Water and salt permeability decline factors f
w scal

A and f
sscal

A  can be 
obtained from the output layer ( 4

1a ) which produces the final results of 

processing by the NNs model as: 
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3- Results and discussion 
The experimental input data for the NNs based correlations is shown 

in Appendix (I). The results of two NNs models of f
w scal

A and f
sscal

A  are shown 
in Table 1 and Table 2. The weights and bias between the input layer, 
hidden and the output layer are included in the results. 
The permeability decay factors predicted by the NNs are plotted versus 
their corresponding experimental values in Figures 3 and 4. The results 
illustrate good agreement between the predicted and experimental data. 
Also, it can be seen from the Figures 5, 6 that the experimental data of 
water and salt permeability decay factors are accurately predicted by the 
NNs model.  

Table 1 NNs parameters for estimation water permeability factor 
Weights  bias   Transfer 

function  
2nd layer      

2
11

w =1.15622 2
12

w =-1.72079 
2
1

b =3.09386 
  tanh 

2
21

w =-0.05138 2
22

w =0.20847 2
2

b =0.150153   tanh 
2
31

w =2.04809 2
32

w =-3.43108 2
3

b =-3.30951   tanh 
2
41

w =1.42777 2
42w =-0.96244 2

4
b =-1.61448   tanh 

3rd layer bias  
3
11

w =1.76307 3
12

w =-0.95896 3
13

w = 2.15917 3
14

w =2.20172 3
1b =-3.03812 tanh 

3
21w =0.28681 3

22w =1.96992 3
23w =-0.37512 3

24w =0.67162 3
2b =0.29936 tanh 

4th layer     bias   
4
11

w =0.58228 4
12

w =3.76995 4
1

b =-0.13469  1 

time mean time std T mean Tstd f
meanw

A  f
stdw

A  

167.74 109.41 21.19 1.82 0.99 0.03 
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Table 2 NNs parameters for estimation salt permeability factor 
Weights 
2nd layer  

  bias   Transfer 
function  

2
11

w =1.777414 2
12

w =-2.29036 2
1

b =-4.52089   tanh 
2
21

w =0.35902 2
22

w =-2.04543 2
2

b =-1.60477   tanh 
2
31

w =1.059634 2
32

w =-2.37573 2
3

b =3.447281   tanh 
2
41

w =-4.97533 2
42w =-5.77942 2

4
b =-14.6048   tanh 

3rd layer  
 bias  

3
11

w =-1.39766 3
12

w =3.38951 3
13

w =3.07388 3
14

w =1.95439 3
1b =0.80823 tanh 

3
21w =-1.84938 3

22w =1.33817 3
23w =-0.16574 3

24w =-4.00229 3
2b =-6.24591 tanh 

4th layer 
   bias   

4
11

w =-1.34286 4
12

w =2.575753 4
1

b =2.617429       1 

time mean time std T mean Tstd f
smean

A  f
stds

A  

177.46 104.73 21.53 2.03 1.108 0.125 
 

 
Figure 3 Actual water permeability decline factor and the predicted by NNs  

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

0.00 100.00 200.00 300.00 400.00

W
at

er
 p

er
m

ab
ili

ty
  d

ec
ay

 fa
ct

or

Time (day)

NN model

experimental



Prediction of Reverse Osmosis (RO) Membrane Properties ــــــــــــــــــــــــــــــــــــــــــــــــــــ  
 

 

University Bulletin – ISSUE No.18- Vol. (2) – May - 2016. - 72 - 

 

 
Figure 4 Actual salt permeability decline factor and the predicted by NNs  

 

 
Figure 5 Actual and predicted water permeability decay factor 
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Figure 6 Actual and predicted salt permeability decay factor 

 

4- Conclusion  
In this work, NNs based correlation was developed for estimating the 

permeability decline factors over one year of operation for water and salt. 
For each correlation, a multi-layered feed forward network trained with 
back propagation method is used. The proposed NNs model structure (with 
one hidden layer and four neurons in hidden layer) is capable of predicting 
the experimental water and salt permeability decline factors very closely. 
For a given architecture, any correlation can be updated with new sets of 
experimental data. 

The proposed model of membrane permeability decline factors could 
be embedded within the RO operation and design optimization model. 
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Appendix (I) 
Water and salt permeability vs. seawater temperature throughout the year. 

Water permeability      Salt permeability 
Time 
(days) 

Temp 
(°C) 

(Aw) 107 
(m/s bar) 

Aw
f  

(Aw /Awo) 
6.06 19.28 2.31 1.000 
7.51 19.25 2.32 1.004 
10.3 19.18 2.34 1.013 

11.84 19.13 2.32 1.004 
13.76 19.13 2.31 1.000 
14.73 19.14 2.31 1.000 
15.98 19.16 2.3 0.996 
17.33 19.22 2.29 0.991 

18 19.22 2.29 0.991 
22.91 19.16 2.27 0.983 
24.16 19.16 2.29 0.991 
25.8 19.25 2.32 1.004 

27.14 19.31 2.3 0.996 
28.49 19.22 2.27 0.983 
32.63 19.5 2.32 1.004 
33.78 19.4 2.26 0.978 
35.52 19.34 2.29 0.991 
36.48 19.16 2.3 0.996 
39.94 19.22 2.26 0.978 
46.39 19.4 2.3 0.996 
48.51 19.37 2.27 0.983 
52.07 19.74 2.25 0.974 
53.52 19.77 2.24 0.970 
59.77 19.86 2.23 0.965 
60.16 19.89 2.28 0.987 
63.33 19.86 2.23 0.965 
65.84 19.8 2.26 0.978 
71.42 19.8 2.25 0.974 
76.62 19.95 2.25 0.974 
81.72 20.29 2.26 0.978 
86.82 20.41 2.28 0.987 
87.49 20.41 2.3 0.996 
91.63 20.63 2.32 1.004 
92.21 20.69 2.29 0.991 

cont'd next page      cont'd next page 

Time 
(days) 

Temp 
(°C) 

(As) 108 
(m/s) 

 As
f 

(As /Aso) 
3.37 19.41 2.62 1.000 
6.75 19.28 2.55 0.973 
9.28 19.16 2.48 0.947 
10.5 19.16 2.46 0.939 
16.12 19.13 2.42 0.924 
20.06 19.19 2.35 0.897 
24.46 19.16 2.29 0.874 
25.3 19.21 2.48 0.947 
26.99 19.25 2.67 1.019 
27.74 19.22 2.59 0.989 
29.61 19.22 2.75 1.050 
31.3 19.56 2.9 1.107 
32.05 19.53 2.82 1.076 
33.74 19.47 2.69 1.027 
38.42 19.16 2.74 1.046 
39.83 19.22 2.82 1.076 
40.39 19.22 2.9 1.107 
41.7 19.22 2.98 1.137 
44.33 19.4 3.05 1.164 
45.64 19.3 3.01 1.149 
46.58 19.4 2.93 1.118 
59.04 19.86 2.69 1.027 
62.42 19.86 2.62 1.000 
63.73 19.84 2.74 1.046 
64.1 19.8 2.72 1.038 
66.73 19.77 2.79 1.065 
69.16 19.77 2.7 1.031 
71.69 19.8 2.63 1.004 
72.82 19.86 2.62 1.000 
79.28 20.2 2.64 1.008 
80.97 20.29 2.63 1.004 
85.19 20.35 2.6 0.992 
87.72 20.41 2.52 0.962 
88.94 20.47 2.78 1.061 
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Water permeability      Salt permeability 
Time 
(days) 

Temp 
(°C) 

(Aw) 107 
(m/s bar) 

Aw
f  

(Aw /Awo) 
96.15 21.18 2.32 1.004 
98.18 21.27 2.29 0.991 
102.31 21.42 2.33 1.009 
104.62 21.48 2.29 0.991 
106.74 21.6 2.29 0.991 
108.96 21.69 2.31 1.000 
111.17 21.85 2.28 0.987 
112.81 21.97 2.33 1.009 
115.6 22.18 2.34 1.013 
116.75 22.21 2.29 0.991 
118.68 22.46 2.32 1.004 
120.12 22.64 2.31 1.000 
121.28 22.76 2.31 1.000 
125.13 22.76 2.31 1.000 
128.21 22.85 2.31 1.000 
132.06 22.95 2.37 1.026 
134.85 23.01 2.34 1.013 
136.87 23.13 2.35 1.017 
138.12 23.16 2.38 1.030 
143.03 23.4 2.38 1.030 
148.8 23.37 2.38 1.030 
154.67 23.59 2.36 1.022 
160.74 23.95 2.36 1.022 
166.51 24.23 2.37 1.026 
171.9 24.23 2.38 1.030 
177.49 24.56 2.39 1.035 
183.45 24.53 2.4 1.039 
189.81 24.56 2.41 1.043 
196.16 24.81 2.4 1.039 
202.51 24.99 2.4 1.039 
208.67 24.78 2.39 1.035 
213.77 24.56 2.38 1.030 
217.04 24.29 2.36 1.022 
219.93 24.26 2.34 1.013 
224.74 24.14 2.33 1.009 
226.09 24.14 2.37 1.026 

cont'd next page      cont'd next page 

Time 
(days) 

Temp 
(°C) 

(As) 108 
(m/s) 

As
f  

(As /Aso) 
93.9 20.75 2.82 1.076 
103.9 21.27 2.98 1.143 
105.9 21.54 3.06 1.168 

107.68 21.63 2.98 1.137 
111.34 21.85 2.92 1.115 
112.18 21.88 2.84 1.084 
122.3 22.76 3.23 1.233 

126.61 22.76 3.16 1.206 
130.83 22.95 3.24 1.237 
137.76 23.13 3.23 1.233 
138.33 23.16 3.24 1.237 
140.86 23.19 3.09 1.179 
142.64 23.31 3.01 1.149 
143.86 23.4 3.21 1.225 
147.98 23.37 3.15 1.202 
149.39 23.37 3.01 1.149 
151.82 23.47 3.18 1.214 
152.01 23.56 3.26 1.244 
153.51 23.71 3.5 1.336 
159.51 23.71 3.46 1.321 
166.16 24.23 3.45 1.317 
171.22 24.29 3.28 1.252 
174.5 24.5 3.43 1.309 

177.13 24.78 3.51 1.340 
183.4 24.53 3.48 1.328 

185.84 24.5 3.45 1.317 
188.09 24.47 3.37 1.286 
189.31 24.56 3.44 1.313 
191.28 24.9 3.21 1.225 
194.74 24.81 3.28 1.252 
195.21 24.81 3.44 1.313 
205.71 24.96 3.47 1.324 
226.14 24.14 3.29 1.256 
227.64 24.05 3.17 1.210 
228.11 23.86 3.22 1.229 
229.33 23.71 3.11 1.187 
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Water permeability      Salt permeability 
Time 
(days) 

Temp 
(°C) 

(Aw) 107 
(m/s bar) 

Aw
f  

(Aw /Awo) 
228.98 23.86 2.34 1.013 
233.02 23.71 2.37 1.026 
235.62 23.47 2.33 1.009 
239.95 23.22 2.37 1.026 
242.45 23.1 2.33 1.009 
247.56 22.92 2.32 1.004 
252.08 22.7 2.31 0.996 
256.7 22.31 2.28 0.987 
261.9 22 2.27 0.983 
267.67 21.6 2.25 0.974 
273.35 21.08 2.24 0.970 
281.53 20.96 2.21 0.957 
283.55 20.84 2.21 0.957 

285 20.75 2.19 0.948 
287.88 20.69 2.19 0.948 
288.27 20.69 2.17 0.939 

290 20.5 2.21 0.957 
293.56 20.44 2.17 0.939 
296.55 20.32 2.2 0.952 
297.03 20.32 2.17 0.939 
298.47 20.2 2.19 0.948 
300.3 20.17 2.18 0.944 
307.13 19.83 2.17 0.939 
310.21 19.86 2.17 0.939 
313.78 19.74 2.17 0.939 
317.14 19.65 2.17 0.939 
321.57 19.59 2.19 0.948 
325.52 19.59 2.2 0.952 
331.49 19.71 2.21 0.957 
337.93 19.68 2.21 0.957 
344.86 19.65 2.21 0.957 
347.27 19.31 2.2 0.952 
351.6 19.25 2.21 0.957 
356.7 19.28 2.2 0.952 
362.96 19.53 2.19 0.948 
363.54 19.56 2.19 0.948 

 
Note: Training data in plain, Validation data in italic, Test data in bold. 

Time 
(days) 

Temp 
(°C) 

(As) 108 
(m/s) 

As
f  

(As /Aso) 
235.23 23.47 3.08 1.176 
237.01 23.47 3.09 1.179 
239.26 23.22 3.01 1.149 
240.85 23.19 2.99 1.141 
245.63 22.98 2.93 1.118 
245.63 22.98 2.93 1.118 
249.48 22.82 3.05 1.164 
278.43 20.96 2.62 1.000 
287.71 20.69 2.71 1.034 
243.2 23.04 2.95 1.126 

291.27 20.5 2.78 1.061 
294.08 20.35 2.72 1.038 
297.18 20.23 2.74 1.046 
299.24 20.2 2.7 1.031 
300.36 20.17 2.7 1.031 
301.3 20.02 2.68 1.023 

304.86 19.9 2.68 1.023 
305.33 19.83 2.64 1.008 
307.58 19.83 2.57 0.981 
310.95 19.86 2.54 0.969 
314.14 19.71 2.63 1.004 
315.55 19.68 2.71 1.034 
317.7 19.65 2.54 0.969 

325.39 19.59 2.45 0.935 
332.13 19.71 2.45 0.935 
335.7 19.71 2.45 0.935 

338.88 19.71 2.44 0.931 
342.44 19.65 2.45 0.935 
345.35 19.47 2.42 0.924 
355.47 19.25 2.46 0.939 
360.16 19.44 2.51 0.958 
365.31 19.56 2.5 0.954 

 


