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Abstract:

This paper deals with the global well-posedness of the
bidimensionnel Boussinesa system which couples the incompressible Euler
equation with fractional diffusion for the velocity and a transport diffusion
for the temperature with initial data

v? € HY(R?) nWP(R?),2 < p < =,0° € L2(R?) N
B, ,(R?).
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1. Introduction:

Generalized Navier-Stokes-Boussinesq equations (GNSB) for the
incompressible fluid flows in R* have the form

0;v+v.Vv+Vp=F(0)+Kv
0:0 +v.V8 = H(0O), divv=20
v(t =0) =v°, 0(t=0)=0°

where v = (v,v,); v; =v;(x,t),j = 1,2,(x,t) € R? x
[0, 00) the velocity field, p = p(x,t) is the scalar pressure and 6(x,t) is
the scalar temperature. F and H are given smooth functions. The following
cases for the linear dissipative operator K will be discussed : Kv = 0 (non
dissipation), Kv = v (linear function) and Kv = Av (viscosity).
The Boussinesq system has important roles in the atmospheric sciences for
F(8) = Oe,, e, = (0,1) (see for example [4]).

Before discussing the mathematical aspect of our model with general
F we will first focus on the special case F(0) = ey, e, = (0,1). The
simplest model for the mathematical study is the fully viscous model i.e
when Kv = Av,H(6) = Af. The global well-posedness result can be
obtained in this case. On the other hand, the regularity question of the case
when F(0) = (0,0),Kv = 0 and H(f) = 0 is an outstanding open
problem in the mathematical fluid mechanics (See [10, 16, 19] for studies
in this direction).
We note that in space in dimension two, the vorticity is defined by the
scalar w = 9;v% — 0,v? solves the equation

drw +v.Vw = 040.

The main difficulty is that to get an L* estimate on w which is

crucial to prove global.

: : : t
existence of smooth solutions , one need to estimate [ 0 10,0 (7)]| e dT.
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For the fully viscous i.e Kv = Av and H(6) = 0: This system can
be seen as an hyperbolic quasi-linear system and thus it is locally well-
posed in Sobolev spaces H® with s > 2. The global well-posedness results
were recently established in various functional spaces. Chae [9] proved the
global existence and uniqueness for initial data (v° 8°) € HS, with
s > 2. This result was improved by [20] for less regular initial data 1.e
v°%,6° € H5 with s > 0. In [13], Danchin and Paicu proved the
uniqueness result in the energy space

L?. According to a recent work of [14] one can construct global
unique solution when the dissipation acts only in the horizontal Kv =
011 V. instead of Av.

More Recently Hmidi, Keraani and Rousset [23] proved for H(8) =
0 the global well—posedness for fractional diffusion Kv = —|D|v with
initial data v° € H* N WP with 2 < p < o and 6° € L? N BY, | where
the dissipation |D| defined by

F(ID|g)(©) = IE1(Fg)(©).

They used the smoothing effects for the quantity (w — RO) where R
is a Riesz transform which yield the crucial estimate on the Lipschitz norm
of the velocity and by using it to propagate the L Pnorm of the vorticity.

In this paper we address the question of global existence in the case where
the dissipation occurs in the velocity equation and H(8) = 0 i.e we focus
on the system
0;v+v.Vv+ |D|lv+Vp = F(6)
(1.1) d0;0 +v.Vo =0, divv =20
v(t =0) =v°, 0(t =0) =0°.

Here F 1s a vector valued function depend on 6(x,t) satisfies
F(0) = 0 and F(0) € C*3(R, R?). If we take 8 = 0, then the system (1.1)
is reduced to the well-known 2D incompressible Euler Boussinesq system.
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It is well known that this system is globally well-posed in H®,s > 2 . The
main argument for globalization is the Beale-Kato-Majda criterion [5]
ensuring that the development of finite -time singularities is related to the
blow-up of the L ®norm of the vorticity. Vishik in [25] has extended the

global existence of strong solutions result to initial data lying in the spaces
2

1+=
B, .*- Notice that these spaces have the same scaling as Lipschitz functions

and the BKM criterion cannot be used.

Let us now discuss briefly the difficulties for Kv = —|D|%v, a < 2
and H(A) = 0. We write the system under the vorticity temperature
formulation as follows

0w +v.Vw + |[D|%W = 61(F2(9)) — 62(F1(9))
d:0 +v.Vo =0, divv=0
w(t =0) = curl v°, 0(t =0) =0°.
Taking the L? scalar product, we get,

t t
Iw(®)l72 +f Iw@ 2 adr < [WOll7 + ||VF||L°°f 16(DI1? , _adt
0 H?2 0 H™ 2

and ,
16(O)1l2 = 110°]l,2.
Fora =2, we can obtain a bound for w in L3.(R,,L*) N
L3,.(Ry,H'). For 1 < a < 2, there is no obvious a priori estimate on

||9||H1_% to estimate the vorticity and we will use the idea of [23]

consisting in the use of the smoothing effect on the distance between the
vorticity w and the Riesz transform on the temperature RO .We intend
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then to use this approach to treat the general case of F # 0and a = 1, we
consider (1.1) for which the vorticity form from of the system is:

{ 9,0 +v.V0 =0
divv =0

\ wt=0)=curlv® ,8(t=0)=20°

This is the crucial case in the sense that the again of one derivative
by the diffusion term roughly compensates exactly the loss of one
derivative in 6 in the vorticity equation and has the same order as the
convection term.
The main result of this paper is to extend the results of [23] for general
term F and is a global well-posedness result of the system (1.1). It reads as
follows (see section 2 for the definitions and the basic properties of Besov
spaces).

Theorem 1.1.

Let v° be a divergence-free vector field such that v° € H* n WP
with 2 < p < o0 and 6° € L*NBY; .Assume that F € (*(R,R?)
Then the system (1.1) has a unique global solution (v, 8) such that

v e Ly (Ry, H n W) n L, (Ry;BL 1), 6
€Ly (Ry; L2 N BY ).

Let us say a few words about the main difficulties in the proof of
Theorem 1.1. First we construct a function I' as follows : applying F;(8)
with i = 1,2 to the temperature equation in the second equation of (1.1),

we get
(0 +v.V)F;(6) =0
and acting the Riez transform R; = I%il’ [ = 1,2 on the previous equation,
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0: R F,(0) + v.VR,F,(0) = —[R4,v.V]F,(6)
and
0:R,F;(0) + v.VR,F,(0) = —[R,,v.V]|F,(6).
Now, if we denote I' := w — R, F,(0) + R, F;(0), then we directly have
(1.2) 0T + v.VI' + |D|T = [Rq,v.V]F,(0) — [R,,v.V]F,(6).
The main difficulty then to prove our Theorem is to evaluate in a
sufficiently sharp way the commutator [R;, v.V] between the Riesz
transform and the convection operator, where the commutator
[R;, v.V]F(0) is defined by
[R;, v.VIF(0) = R;(v.VF(0)) — v.VR;F(0)
see section 4 of the paper.
As we will see in our proof, we can obtain a bound on the quantity T’

. More precisely we have FEL?OC(IRJHBSOJ), Vp<§, we refer to

Proposition 5.6.

The rest of this paper is organized as follows. In section 2 we present
some notations and recall some important preliminary results as
preparation. In section 3, we give some estimates for a transport-diffusion
models. In section 4, we collect some properties of Riesz operator R; =

0; . . . . .
ﬁ,Vl = 1,2 and finally we discuss in section 5 the proof of our main

result.

2. Preliminaries
In this section, we introduce some notations and definitions of Besov
space and also recall some well-known results about the Littlewood-Paley
decomposition used later. Let us begin with notations.
e For any positive G and H, the notation G < H means that there
exists a positive constant C such that G < CH.
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e For any tempered distribution g, F(g) denote the Fourier transform
of g with

Fo) = | g@e g
]RZ
e For any pair of operator C and D on some Banach space A, the
commutator [C, D] is defined by CD — DC.
e We denote by WP with 1 < p < oo the space of distribution f
such that Vf € LP.
We introduce now Littlewood-Paley decomposition and the

definition of Besov spaces. Given two nonnegative radial functions
x € D(R?) and ¢ € D(R? /{0}) such that

x(§) + z p(277¢) =1, VE € RZ,

j=0
Yiezp(2778) =1, v¢ € R? /{03,
Ip—jl=2=supp (277.) N upp p(27).) = o,
j= 1= supp y N upp (p(Z‘j.) = o¢.
Set @;(§) = ¢(277¢) and let h = F~1¢ and h = F . Define the
frequency operators A; and S;by

nf = 9(2ID)f =29 [ W@ G-y, 20,
RZ

Sif =x(27/D)f = z Apf = 2% f h(27y)f(x — y)dy,

—1<p<j-1 R2
A_1f = Sof, Aif =0, j= -2
Recall now the following definition of general Besov spaces.
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2.1 Definition:
Lets € Rand 1 < p < oo. The inhomogeneous Besov space B ..
defined by

Bi,={f €S ®):IIfllg, < o},
where
@ [|af | )i + 1Sof lup, 7 < 0

||f||B,§,r = {SuijOZjS”Ajf”LP + ||50f||Lp,r = 00,

The homogeneous norm
@ asfl e 7 <o

Ifllgs, = sl
i lowpjea2 yfl e 7=
If s > 0, then Bj,=LP+B5, and IflIgs, < flle +1Ifllgs,. We
refer to [3, 18] for detail. If p=7r =2, 325,2 is equivalent to the

homogeneous Sobolev spaces H® which is defined below.

2.2 Definition:

Let s € R; the Sobolev homogeneous spaces HS is the space of a
tempered distribution f such that f € LI . and satisfies

= [ 1P G @) < e

The following definition gives the mixed time-space Besov space
dependent on Littlewood-Paley decomposition (see [7]).
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2.3 Definition :
Let T >0 and p=>1,we denote by L‘;Bg,r the space of
distributions f such that

17 1ge5, = [1(218071,0),. ]|

Besides the usuel mixed space L‘;Bg,r, we also need Chemin-Lerner spaces

< +o0,
p
T

Z‘;Bg,r which is defined as the set of all distributions f satisfying

LI

The relation between these spaces are detailed as below, which is a

< +0o,

Ifllzegs, = )

direct consequence of the Minkowski inequality. Let s € R,€E > 0 and
(p,7,p) € [1,+]3 . Then we have the following embeddings

P ps TP ps P ps—e¢ .

10.BS, < [OBS, & LOBS:%,  if r>p,
P ps+e 7P ps P ps ,

LyBpy= < LyBpy & LBy, if p=T.

For convenience, we also recall the definition of Bonys para-product
formula, which gives

the decomposition of the product of two functions f(x) and g(x)
(see. [2, 12]).

2.4 Definition:
The para-product of two functions f and g is defined as

J
The remainder of the para-product is defined as

RO = ) Mftg
lj-7Jls1
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Then Bonys para-product formula reads
f.-9=Teg + Tof +R(f,9).
Next, let us introduce some useful lemmas which will be repeatedly
used throughout this paper. We start with Bernstein inequality which is
fundamental in the analysis involving Besov space (see [6]).

2.5. Lemma (Bernstein Lemma).
There exists a constant C > 0 such that for every q € Z, k € N and

for every tempered distribution u we have

, 11

(’”2(5—5))

]
supia|=k[|0“Syul] , < C*2 Isull . bzax1

c 2 |igul, < supraroiloiyul < c¥2|Aul

The following lemma will be needed (see [23] for a proof).

2.6. Lemma (Commutators estimates).
Let v be a smooth divergence-free vector field
and h be a smooth function then
(1)for every j = —1 and p € [1, o],
|4, v. V]h”Lp S Vol e ||kl z .

Bp'1

(2) For every s € [—1,0],
lv. Vhllgs , = llvllzllAll pzyrs.
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3. Transport-diffusion models:
The goal of this paragraph to gives some estimates for a transport-
diffusion models. We can find the proof of the following estimate in [1].

3.1. Proposition :
Let v be a smooth divergence-free vector field and if 8 be a smooth
solution of the equation,
0:0 +v.VO = h,
{ 0(t =0) =0°.
Then for every p € [1, ], we have

clvll 1.1 t
10(0)llp;, <€ HiPeon <II6’°|IB,;_3,o +f IIh(T)IIB,;_gOdT)
0

3.2. Proposition :
Let v be a smooth divergence- free vector field, « € R, and
(p,7) € [1,]% . Then there exists C > 0 such that for every scalar

solution ¢ of the equation
{at( +v.V{+ a|D|{ = h,
((t=0)=¢°

satisfies
t
1 lieng, < CQICllgg, + 1rllzz5g )L + f V0 (D)l d)
0
and
t
1O < 1700 + f @l do).
0

We mention that the result is first proved in [25] for « = 0 by using
the special structure of the transport equation. Hmidi and Keraani [22]

University Bulletin — ISSUE No.18- Vol. (2) — May - 2016.




On The Global Well - Posedness Result

generalized Vishik's result for a transport diffusion equation where the
dissipation term takes the form —aA{ . The method described in [22] can
be easily adapted to our model for more details can be found in [24]. The
LP estimate are proved in [8].

The following estimates on the velocity equation is useful in the
proof of the uniqueness part (see [23] for a proof).

3.3. Proposition :
Let s€]-1,1[, p € [1,0] and v be a smooth divergence- free
vector field. Let u be a smooth solution of the system
diu+v.Vu+ |D|lu+ Vp = h,
divu =0,
u(t = 0) = u’.
Then we have for every t € R,

1
1__
lull ops , < Ce&® <||u°||35,w + (1 rt p) IRl )

LtBZ,oo

where :

t
V(): = f Vo (D)l d.
0

4.Riesz transform and commutators:
In this paragraph, we collect some useful properties of the Riesz

operator R; = ﬁ withi = 1,2.
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4.1. Proposition :
Let R; = I%il be the Riez operator with i = 1,2 . Then the following

hold true.
(1) For every p € ]1, oo,
IRl zery = 1.
(2) Let C be a fixed ring. Then there exists n € S whose spectrum does not
meet the origin such that
Rig = 29 (2%.) * g,

for every g with Fourier transform supported in 29C In particular,
R;A, is uniformly bounded (with respect toq € N in LP for every p €
[1, oo].

The property (1) is a classical Calderon-Zygmund theorem (see [26]
for instance) and (2) is obvious.

The following lemma is useful in dealing with the commutator terms (see
[24] for a proof).

4.2. Lemma :
Letp € [1, 0], f, g and h be three functions such that Vf € LP, g € L”
and x h € L'. Then
lh*(fg) — f(h* Dlle < llxhll 2 IVFllLell gl
The next proposition consider the crucial commutators involving the
Riesz transform R;.

4.3. Proposition
Let v be a smooth divergence-free vector field. Then for every
smooth
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scalar function 6 the following estimates hold true Vi = 1,2.
(1) For every r € 10,1
I[R:, v16llar Sy IVV1 201601l 573 + V1121161l 2.
(2) For every p € [2, ]
I[R:,v. V1659 . Sp IVUIlLeI6]lgg, , + I1VIl216]] 2.
(3) For every p € [2, 0]

1[R;, v. V161159, <, IV0llzo (161155, + 161120 )

The estimates (1) and (2) are proved in [23], while the proof of (3)
can be found in [24]. Notice that this proposition is valid for any vector-
valued function F(0) = (Fl (6), F; (9)). This fact is useful in the proof of
our main result in the next section (see Propositions 5.2, 5.3 and 5.5)

5. Proof of our main result:
Throughout this section we use the notation ®; to denote any
function of the form
®; = Cyexp(...exp(Cyt) ...),
l—-times
where C, depend on the norms of the initial data and its value may

vary from line to line up to some absolute constants. We will make an
intensive use of the following trivial facts

t
[ @, (Ddr < @y () and  exp(f; ,()dr) < @y (L)
We will also use the following estimate for F(6). Applying Taylor

formula at order 1; with F vanishing at 0; we get
1

F(O) = efF‘(re)dr.

0
If6° € L* and F € (}(R, R?), then we have for all p € [1, o],
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1
1@l < 1011 [|IF @0l
0

Now,
”F\(TH)”LOO < sup|y|s||eo||L°o|F\(y)| <C.
Therefore
(5.1) IFEEDIr S N80, VEER,.
The aim of this section is the proof of Theorem 1.1. For the sake of a
clear presentation, we divide it into three subsection. An a priori bound is
proven in the first subsection. The second and the third subsections proves

respectively the uniqueness and the existence results, with the aid of the a
priori estimates.

5.1. A priori estimates.
We shall first discuss some results about weak solutions. We will
prove the following energy estimates.

Proposition 5.1.
Let (v°,0°) € L? X 12 N L* and F € C*(R, R?). Then there exists a

L1
global weak solution of the system (1.1) in LY (R,, L?) N L3, (R,, H?) X
LY (R, L?) such that Vt € R,

t
()17 + f @)1 1dr < Co(1 + 2),
2
0

16l < 116°]]2.
Besides if 8° € LPfor some 1 < p < oo, we further have
16l < 16°]..
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Proof. The LP -estimate for 0 is a direct consequence of Proposition
3.2. For the L? estimate for v, by taking the L? inner product with v in the
velocity equation, we have then

ld 2 2
S W@ + (O s = f F(6(t,0)v(t, x)dx
R
< [IF@O)l2lv(®) ]l 2
< 18°1l 2 lv (O]l 2-
we have used Holder inequality, Proposition 3.2 and (5.1). On the
other hand,

t
vz < w02 + fIIF(G(T))IIdeT
0

< 1v°lliz + 16°l 2.

Putting this inequality in the previous one yields
1d
2dt
Integrating in time, we obtain

vl + Ilv(t)lllzﬁ S 10°12 w0z + 18°1] 28)

t
w117 + f @12 1dr < Co(1 + £2).
2
0

We aim now at prove some smoothing effects on the quantity
[ through studing the equation (1.2), we start with the construction of a
global weak solution.

5.2. Proposition :
Let v be a smooth divergence-free vector field of R? with vorticity
w = curlv such that v° € H! and 6° € L N LY with 4 <y < o and
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F € (}(R,R?). Then there exists a global weak solution for the system
(1.1) such that

t
W@ + [IT@IE e < 0,
0

Proof. Taking the L? estimate of the equation (1.2),

LRl + T2
2 dt Oz ()H%

- f Ry, v. V1, (66, )T (¢, )dbx

R2

- f [Ry, v.VIF, (06, )T (t, x)dbx.
]RZ
Using [R,, v.V]F,(0) = div([R,,v]F,(0)) and [R,,v.V]|F,(8) =
div([iRZ,v]Fl(H)), we find

(52 IrOIE +IFOI
' 2 e TN + IO

< IRy, V1RO s + 1R, vIF O DT s
Thanks to the part (1) of Proposition 4.3 with F(8) and Proposition 5.1, we

get
IRy, vIE O 1 S IVl 2l F2 (001 2 + w2 IF2(0)]l,
B

00,2

(WOl 2 11F2(0) |y + [[v(©l 2 [1F2(0)]] 2
IwOl2118°11,r + Co(1 + O116°]1,2
(5,3) S w2 N8°1,y + Co(1 + 1),

S |
S |
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we have also used the Calderon-Zygmand and the embedding
1

LY & B;’EZ for y > 4. Similarly, we find

(5.4) IRz, vIFL (O] 2 = w2 118°1lr + Co(1 + 0.
Putting together (5.3) and (5.4) into (5.2), we get

1d 5 5 0
S T + IIF(t)IlH% S (w2 N16°1y + Co(1 + t))IIF(t)IIH%
However, the equation of I' (1.2), the continuity of R;, the inequality
(5.1) and Propositions 4.3 and 5.1, yields
Iw®llz < IT@l2 + IR F2(0) [l 2 + 1R F1(O) 2
(5.5) S Tz + [1F2(0) 2 + IF1(0)]l 2
S ITOlz + 116°1 2.
Therefore
1d 5 5
S Tl + IIF(t)IIH% < GUIT®lz + 1+ DITOI 2.

The Young inequality yield
d
T It + IIF(t)IIIZﬁ < GolIT@®)I72 + Co(1 + £2).

Integrating this inequality, we obtain
t

IT@OINE + [IT@I%, dr < Co(1 + t?)e%

H2
0

(5:6) < @, (t).
Now the inequality (5.5) and Young inequality implies that:

Iw®lIz2 S ITOIIF + 116°117.
Hence it follows that:
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t
W@l + [IT@IE s de < @,0).
0

This is the desired result.
Let us now prove some strong a priori estimates with regularities
more stronger than previous.

5.3. Proposition :
Let (v,0) be a solution of the system (1.1) such that v° € H! n

Wip g0 € 12N L% with 2 < p < o and F € C}(R, R?). Then we have for
every y € [2,4[ N [2,p],

Wl f Iy dr < &, (0).

Proof. Multiplying (1.2) by IT|Y T and integrating in space variable
we get for every 0 < f < 1, fwill be chosen later),

(5.7) lilll“(t)lly + f(IDIF)IFIV‘ZFd < (I[R4, vIF,(O)]I
. Y dt LY 2 X < ( 1, VIF,(0) |l 1-8

+ [[[Rz, vIFL (Ol g2-) HITIY 2T (D) 4
We have from Lemma 3.3 in [15],

AT ATE: Y
~|iriz| < | apioirierdx.
14 az = )

.1
Combining this estimate with the embedding Hz < L*, we find

T, < f (IDID)ITIA dx.
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Therefore
1d y y
(58) - ITOIy +elr)f

S (“[:RL U]FZ(H)”]-'[l—B
+ |[R2, vIFL (O 2-)IITI 2Tl -
Now we have from Propositions 5.1, 5.2 , the part (1) of Proposition
4.3, (5.1) and the Caldron-Zygmand estimate,
I [R1, vIF, (D)l g1-8 < [[Ry, vIF (0 y1-5
S IVollllF2(O)lp-p + vz lIF2 (0)]],2
S w2l F2 (@)l + Co(1 + 1)
S WOl N18°1l» + Co(1 +£)
< o,(t).

We have used also the embedding L* < B;g, f > 0. Similarly for
I[R2, v]F;(0)|lz1-5. Finally we get
d
(5.9) e I}y + clIT@®} 2 < @O 2T Ol -
To estimate |||T|Y 2T (t)|l;;s we use the following lemma (see [23]

for a proof).

5.4. Lemma :
Let § € [2,00[ and r € ]0,1[ . Then for every smooth function n we have

12 =2nll e = Mmllgz

Combining this lemma with (5.9) yields

d 14 14 y—-2
20 ITOIly + Tl 2y < 1T 2y IIFIIHBH_;-
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We choose 0 < <1 suchthat f + 1 — % = % which means that § = %—
% this 1s possible for 2 < y < 4. Therefore
d _
POy + ¢TI}y < @1 ONTIT 2.
The Young inequality
Yy ¢ Y
lef1 < clel2 + |72
implies that

d Y 14 %
T T,y + cllT@® 2y < 2L OIT@)
H2

Integrating in time with Holder inequality, we get

AR

t

] Y
Ty + Cf”F(T)“)L/zydT < TNy + @@ | [ IT@II?,de
0 0 He
Applying Proposition 5.2, we obtain finally

t
T, + f P2y dt < &4(0).
0

The proof of the proposition is now complete.
We need to the last following smoothing effect on I' for the
Lipschitz control of the velocity ||Vv|| .

5.5. Proposition :
Under the same assumptions of Proposition 5.3, we have for every

Yy € [2,4][ N [2,p] and for every p € [1,%[,

ITOI 2 < @y (0).

14
LtBy,l
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Proof. Let N € N to be chosen later. By definition of Besov space we have

N s = 2%a, F©llp,, + )2 a, Ol g,

t y1 q<N qz=N
(5.11) =1 + I,.
We have, by using (5.10)
N2 N2
(5.12) L <2 y||F(t)||L§LV <2 7D (t).
Then for I , we localize in frequencies the equation (1.2), we obtain
0:AqT +v.VA,T + |D|4,
= —[A4,v. V|l + A, ([Ry, v. VIF,(8)) — A, ([Ry, v. VIF,(6))
= hy.
Multiplying the above equation by |AqF|y_2AqF and integrating in

the space variable, we find

1d Y 2 -1
;a”AqF(t)”LY + f(lDlAqF)lAquy Agldx =< ”Aqr(t)”l/y ”hq(t)”Ly'

Using the following generalized Bernstein inequality (see [11, 17]
for a proof)

vV1i<y, c2q||Aqr(t)||Zy < f(lDlAqF)|AqF|y_2Aqux,
2

where ¢ depends on y. Thus
Y

1d 1
—q 8@l +c29agr @1, < [18r I, Ml ®,

Hence it follows that

larrol,” = Sl +c2?ar @l < a7, Ir o,
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This yields
d
AT, + c2]|ar @], < [[rg @,
Multiply the above inequality by e°2? we find
< e ar@ll,,) = e [l ®ll,

Integrating in time, we obtain

t

12,7, < e~e|ar]l , +je—'~"<f—f)2"||[Aq,v.v]r(r)llLydr
0

+

e~ D[, ([Ry, v. VIF(8)) (D), d7

n e—c(t—r)2‘7||Aq([R2,v.V]Fl(e))(f)”LydT-

O\mo\m

Taking the LP[0,t] norm, using convolution inequalities and

2
multiplying by 2% we obtain

2 21
28Ty, <257 a7, + zypr%mvrﬁm de
t

t

2 1)

+29G7p f”Aq(IRl,v VIF,(0) (D), dr
0
2 1
(5.13) +27%77 f||A ([Rz, v. VIF1(B) (@), d7.

For the first integral of (5.13), we use the part (1) of Lemma 2.6 and
Proposition 5.3
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[[4g, v- ]|, s Vol z S [WlwliTll 2 = @O =

14 14
BV.l B]/.l B]/.l

To estimate the second integral of (5.13), we use Propositions 5.1,
5.3, the part (2) of Proposition 4.3 and (5.1),

|44 ([Ry, v. VIF(8))]| , S II[Ry, v. VIF2(8))ll1r
S Vol [IF2(8) [l e + [[V]] 2 [IFL(8)]],2

S IWllr18°1 0 + NIVl 118°1] 2 < @4(2).
Similarly we find

144 ([Ry, v. VIE,(B)) ], < @1(0).
Summing the inequality (5.13) on g = N,

21
> 2ty 5 3 207 el + Y 2 j PO d

q=N q=N q=N
+ Zq(V jdb (v)dt
qu )
Therefore,
N(5-2) 10 CEI
> 2 %lla, Ml 527 VIl +27 2 Va0l
L*BY
q=N tPy1

1 2
_N [ —
427G V)CI)l(t).
Since |[T°||» < WOl + 116°]| 7, then

2 1 2 1 2 1
> 2ty <270 Ves@inl s <26 e, B0

Y PprY
q=N LeBy 4 LeBy 4

(5.14) <2 GPo, o - .

14
LtByl

Putting (5.12) and (5.14) into (5.11), we obtain
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2 1 2
In 2 <2%e,0 + 276 Ve, o
257,

Finally we choose N such that
12 1

z‘N(E‘7)¢1(t) ~

This implies that

Tl 2 < @y (o),

P Y
LBy,

This is the desired result.
The aim now of the following proposition is to get estimates on ||Vv|| .

5.6. Proposition :
Assume that (v, 8) be a smooth solution of the system (1.1) with
FeC3(RR*) Let v e H'nWP,2 <p<oand 6°€ LN BY ..

Then we have Vp € [1,2[ N [1,2[,

IWllzego  + IViizege 4+ 18(Olzepe , < P1(2).
t 20,1 t Poo,1 t Poo,1
2

Proof. First from the embedding B;l S Bc?o,l, we immediately get

from the Proposition 5.5 that for t € R,
(5.15) INOIFFRELHO)
Using (5.15) for p = 1,

t t
Iwllpige , < ITllge , + | IR1F2(O(T)Ilpe dT + | IRF1(6 ()l g  dT
tPo0,1 tPo0,1 00,1 0,1
0 0

(516) =00+ [IREO@)lag, dr+ [IRF OO, dr
0 0
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Now from Bernstein inequality, Propositions 4.1, 5.1 and (5.1), we
find,

IR2F2 (O)llgg,, = 1A, R F2 (@)= + ) [|8,RF )]

geN
< [[A1 R F2(O)]l,2 + ||1:2(6’)||B§,’0_1
(5.17) S 0%z + IIF2()lizesg, ,»

where we have used the fact that A;R; is uniformly bounded (with
respectto ¢ € N in L? for every 1 < p < oo. Similarly, we find
(5.18) IR2F1 ()Igg,, = 110112 + IF1 (@)l zepg, -
It remains then to estimate ||Fi(9)||zg°320_1» Vi = 1,2 . For this purpose, we

use the following theorem see [17] for a proof

5.7. Theorem :

Let F € CI$1*2, 5 a positive real number and F vanishing at 0. If u
belongs to By, N L%, with (p,r) € [1,4]?, then Fou belongs to By,
and we have

IFoullps, < Cssupjxisciull,e [|F* 2 GO o llutll 3,
Since F € (%(R, R?), we deduce that
IFO)llse,, < 16°l50 -
Since (d; + v.V)F;(8) = 0 then applying Proposition 3.2, we find

t
(5.19) IE(O)lIzops, , < IF(8%Il5o,, (1 + f IV0(D)l 0 dr)
0

Therefore
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IWllgpe, , < @10 + (16°112 + IF (8%l pe,, + IF (O lIge, )t

t
+ (IO lag,, + 1R g, [ IV0lode
0

t
< ®,(t) + Cot + G fo lvlliipy, , dT
t
(5.20) < ®(t) + G | IvllLpy, , dT,

we have used the embedding 330,1 S Lip. It remains then to estimate
|v]| gy ,- For this purpose, we use the definition of Besov space,
Bernstein inequality and Proposition 5.1, we have forj > —1,
Wiz, < CIA vl + ) 28], 0
jEN
S ||U||L%L2 + ||W||L%Bgo_1
2
(5.21) S Co(1+2) + Iwllge .
Where we have used the classical fact ||Ajv|| ~ 2_j||A-z||
LP J=lp

uniformly in j for every j € [1, oo].
Putting (5.21) into (5.20) and using Gronwall inequality, we
immediately get

t t
Iwllzpe , < @1(8) + Co f(l + 12)dt + C'OfllwllL%ng1 dt
0 0

(5.22) < &, (t).
Hence, we immediately get
(5.23) ||V||L%B§o_1 < @.(D).
By the Besov embedding 330,1 S Lip , we find
(5.24) ||VU||L%L°° < (D).
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Now from (5.19) and (5.24), we obtain

2
(5.25) D IE@) s, < @1(0).
i=1
This leads in (5.17) and (5.18), to
(5.26) 1R1F2 (@)l eopg, , + [IR2F1 (D)l gy, , < 4 (8).

Now we can applying Proposition 3.2 to the equation 6 to get

t
161205, < 16°05g, | 1+ [ 170D llmd | < @00,
0

we have used the inequality (5.24). Finally (5.15),(5.26) and Holder
inequality yields for every 1 < p < g,
Iwllzeso |

< Wllizog , + IR Ozppe , + IR2F1(O)llzop0

1
< ®,(t) + tP([[R1F2 ()| IWllze0 o B 1 + ||1732F1(9)||i303201)
t Poo,1 ! ’
(5.27) < O, (t).

Using now Proposition 5.1, (5.27) and Bernstein inequality,
Illzops, , < IA-1wll o + IWllzop0
S Wollypz + Il < @300
The proof of the proposition is now complete.
Finally we prove the LP norm of the vorticity Vp > 4.

5.8. Proposition :
Under the hypotheses of Proposition 5.6, we have for every t € R,

Iw(@®llr < P1(0).
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Proof. Recall that ' = w — R, F,(0) + R, F,;(0) satisfies the equation
atr +v.VI + |D|F = [:Rli D. V]Fz(e) - [:Rz, D. V]Fl(e)
Using Proposition 3.2 we find

Tl < P00l + j 1[Ry, v. V1, (0) (@) ll» dr + j 1Ry, v. VIF )@ l» dr.
0 0

We use the embedding Bg,l S [P, the part (3) of Proposition 4.3
with F(8), Proposition 5.1, (5.1) and (5.25), we obtain V2 < p < oo,
I[R1, v. VIF, (@)l r S |I[Ry, U-V]FZ(Q)||J_:;13_1

S IVolle (172 (@)l gg, , + 11F2(6)1lLr)
< [wlle (@12 + 116°]0)
< &, (D) [|wlle.
Similarly for ||[R,, v.V]F,(6)]|.» we find
I[Rz, v. VIF, (@)l p < D1 (D)Wl p.

Therefore
t

IF@l < Il + | @Il d.
0
On the other hand we have

IW®lle < IT®Ile + IR F2(BE)le + [[R2FL(6(E))]I1r
< IIP®lle + NIF0 @)L + [1F1(6()lLr
< IT@lle + 16°]p.

We have used the continuity of Riesz transform, the inequality (5.1)

and Proposition 5.1. Hence
t

Iw®lle < ITNle + 116°]].0 +f P, (D Iw(D)lr dz
0
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t

S Wl + 116°1.p +f P, (D w(Dl e dr.

0
Gronwall's inequality gives

lw(®llp < P, (0).
This proves the proposition.

5.2. Uniqueness.
We will prove a uniqueness result of the system (1.1) in the
following
Space
Ap = LYH' nLLBL  x LY (L* n BY ).
Let {vj, 9]-}, Jj = 1,2 two solutions of the system (1.1) with initial data

(vjo, 9]-0), Jj = 1,2 belonging to the space A We set
v=v,—v, 0=0,—-0, p=p,—p, and G(6)
= F(681) — F(8,).
Then we find the equations
0:v+ v, Vv + |D|lv+ Vp = —v.Vv; + G(0)
0:0 +v,.V0 = —v.V0O,
v(t =0) =v°, O(t=0=0°.
To estimate v, we can write then v = V] + v, where V7 and V5, solve
respectively the following equations
0:v] + v,.Vv; + |[D|v{ + Vp; = —v.Vi,
0:v; + v,.VU; + |D|v; + Vp, = G(O).
To estimate V5, we use Proposition 3.3 for p =1 and s = 0, then
for v,,; we use Proposition 3.3 for p =00 and s = 0. Thus for every
0<t<T,;
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||U||£ct>“oBg'°o < ||ﬁ{||£§ong + “%”E?ng
Therefore
(528) vl
< O ([[v°llgg, + 10 Voullzge  + 1+ OGO oy ).
with V, (t) := f0t||vv2 ()| = dt. Using Lemma 2.6-(2), we obtain
|| v. VUl“ng S ||U||L2||U1||B},o_1-

To estimate ||v|| ;2 we use the following Lemma (see [23] for a proof).

5.9. Lemma :
Let v € H! then we have

3 [
Ivll2 < l1vllgg,, log e + o).

' Ivllsg .
Hence it follows that

3 (AP
Iv.Vvsllgy . S llvallpy, Ivilpg, log (e + e
B3

)10g(€ +lvlig)

1

S ||U1||B},o_1||v||33_°olog <e +

v
vl

(529) = llvallgy,, logle + vl u(lIvlsg,,)
where u(x) = xlog(e + %). Putting (5.29) into (5.28), we find

t
1l g < €O [[0°llgg, + f lvallpy, , logle + I1vll ) it (IIvllzg . ) dz
0

(5.30) +eCV2(0(1 + OIG Ol p;2,
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To estimate ||G(9)||E;~OB£go with G(0) = F(6,) — F(0,). we use the
equations
0:0; +v.V6; =0, j=12,

Multiplying the above equation by F (9]-), we find

d:F(0;) + v;.VF(6;) = 0.
Then we immediately have for G(8) = F(8,) — F(6,), that

0;G(0) +v,.VG(0) = —v.VF(8,),

applying then Proposition 3.1 with p = 2 yields

Cllvall 1

t
(531)  16(®)lIzp1 S e LtB‘1’°'1<||G(90)||BZgO+ j ||v.v1~*<91<r)>||32;°dr>-
0

As before, using Lemma 2.6-(2) and Lemma 5.9, yield
EAZICH R A TICHI S

)log(e F Il IF @D,

S llvligg,, log <e + e
2,00

S IF8D) e, logle + Ivllyn) 1 (11w llag., )
Thus

Cllvall 3 g1

”G(G)HEEBBEQO Se ||G(90)||Bz‘_§o

t
+ [IF@) g, TogCe + vl (Iv1leg, ) ¢
0

Using now Theorem 5.7, we get
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(5:32) 16(O)lIgzp+

Cllvall 1,1
<e L{Bso,1 ”G(HO)”BZ_%O

t
+ [ 10115 ogCe + wlle) e (Ivllsg, ) |
0

Therefore, it follows from (5.30) and (5.32),

Cllvall 151
1Vl zpg,, + 1GOl s Se Hien (||U0||Bg_°o + IIG(HO)IIBZ—;O)
Cllvall 11 ot
+e o [(|lvy(Dlgy , + 101Dl )
(5.33) log(e + I[vlly) 1 (IIvllzg,, ) dr.
IfwesetY(t) = ||1J||L~<t,~oBgc>o + ||G(9)||L~;~OBZ_C1>O , then we find

t
Y© < g@ | YO + [ Anallss,, + 160l
0

log(e + [Ivlly) u(Y (0))dz,
with g a function depending on ”(vf’ef)”dq and on the variable
T

times. The key lemma is the following, known as the Osgood Lemma (for a
proof see [6]).

5.10. Lemma :

Let p be a measurable, positive function, y a positive, locally
integrable function and p a continuous, increasing function. Assume that
for a positive real number c, the function p satisfies
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0<pt)<c+ foty(r),u(p(T)) dr, Vte€R,.

If ¢ different from zero, then we have
t

~9e(p) + M(© < [ Y@z
0

where
1 dr

M(X) = X m
If c = 0 and if u satisfies [ 01 % = +o00, then the function p is identically

zero.
Applying this lemma, with ¢ = g(t)Y (0) # 0, then

—M(Y () + M (g(®)Y(0)

t
< [ U@ llgs,, + 16 llsg ) ogCe + @)
0

where we have used Lemma 5.2.1 in [6] for u(r) =r(1-—
logr).Taking a double exponential with simple calculations , we get the
uniqueness.

5.3. Existence.
According to Lemma 4.4 in [17], we can first smooth our initial data
v,(0) = v, and 6,(0) = 6,,o. We consider then the following system,
0:vy, + v,. Vv, + |D|v,, + Vp,, = F(6,)
(5.34) 0:0, + v,.V6,, =0, divv, =0
vp(t = 0) = vy, On(t = 0) = 0, 0.
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The proof can be divided into two steps. The first step establish the
local well-posedness of the system (5.34). The second step veries for some
0 < T that v, is a Cauchy sequence in the space L?Bgoo.

Step 1. A similarly argument as in [21], we can prove the local well-
posedness of the system (5.34). The global existence of these solutions is
governed by V,(t) = ||[Vvyll;1; which is finite by (5.24). Now the
Lipschitz norm of the velocity can not blow up in finite time by Proposition
5.6, then the solution (v,,,6,) is globally defined. Once again from the a

priori estimates we have for 1 < p < g,

1l wiry + onll s, | < @2(T)
and
”6n||L‘7’9(L2nto'1) < CI)Z(T)_

Then there exist (v,0) satisfying the above estimates such that
(vn, 8,,) weakly convergent to (v, 8) up to the extraction of a subsequence.

Step 2. To show that v,, is a Cauchy sequence in the space L‘}’Bg,m,
we consider the difference v, ,, = v, — v, and 6,, ,, = 60,, — Oyy,.
Now, if we have

dn,m = ”Un,o - vm,OHBgm + ”611,0 - Hm’0||32_,<1>o < a(T),

then we have,

(T)
sl g+ 1Bl ey < B ()

This proves that v, is of Cauchy and hence it converges strongly to v

in L7 B3 ... By interpolation we obtain the strong convergence of v, to v.
Thus v, strongly converges by Cauchy Schartz in L%(R?). Thus v, X v,
strongly converges by Cauchy Schartz in L%(R?). Now Proposition 5.1
implies the weakly convergence of 8, to 8 in L2 (R?), we have then v,0,,
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converge weakly to v6. It then suffices to pass to the limit in (5.34) and
finally get that (v, 8) is a solution of our system (1.1).

Future work : In the future work, we plan to investigate how to
proof the global well—posedness result for (1.1), but the second equation
of (1.1) with a dissipation term, that is 3,60 + v.V0 — A6 = 0.

References:

[1] H.Abidi,T. Hmidi: On the global well-posedness for Boussinesq System.
J. Diff. Equa. 233,1,p. 199-220, (2007).

[2] J.-M. Bony, Calcul symbolique et propagation des singularites pour les
equations aux derivees partielles non lineaires. Ann. de I'Ecole Norm.
Sup., 14, p. 209-246, (1981).

[3] Bergh J, Lfstrom L. Interpolation spaces. An introduction. Springer:
NewYork, 1976.

[4] Y. Brenier. Optimal Transport, Convection, Magnetic Relaxation and
Generalized Boussinesq equations. arXiv. 0801.1088 vI [math.AP] Jan
2008.

[5]J. T. BEALE, T. KATO AND A. MAJDA : Remarks on the Breakdown of
Smooth Solutions for the 3-D Euler Equations. Commun. Math. Phys.
94, p.61-66 (1984).

[6] J.-Y. Chemin, Perfect incompressible fluids. Oxford University Press.

[7] J.-Y. Chemin, Hyperbolic operators with non-Lipschitz coefficients.
Duke Mathematical Journal 1995, 77, 657-698.

University Bulletin — ISSUE No.18- Vol. (2) — May - 2016.




Dr. Samira Lamin Sulaiman

[8] A.Cordoba and D.Cordoba, A maximmum principale applied to the
quasi-geostrophic equations. Comm. Math. Phys. 249, p. 511-528
(2004).

[9] D. Chae, Global regularity for the 2-D Boussinesq equations with
partial viscous terms, Advances in Math., 203, 2 (2006) 497-513.

[10] D. Chae, H-S. Nam, Lacal existence and blowup criterion for the

Boussinesq equations, Proc. Roy. Soc. Edinburgh, Sect. A 127, no.5,
(1997), pp. 935-946.

[11] Q. Chen, C. Miao and Z. Zhang, A new Bernstein inequality and the
2D dissipative quasigeostrophic equation, Commum. Math.Phys.271,
821-838 (2007).

[12] Cannone M. Harmonic analysis tools for solving the incompressible
Navier-Stokes equations. In Hand-book of  Mathematical Fluid
Dynamics, vol. 3, Friedlander S, Serre D (eds). Elsevier: Amsterdam,
2004, 161-244.

[13] R. DANCHIN, M. PAICU : Le theoreme de Leray et le theoreme de
Fujite-Kato pour le systeme de Boussinesq partiellement visqueux,
Bull. Soc. Math France 136 (2008), no.2, 261-309.

[14] R. DANCHIN, M. PAICU : Global existence results for the anistropic
Boussinesq system in dimension two. arXiv: 0809.4984v1 [math.AP],
29 Sep (2008).

[15] J.Ning: The maximum principle and the global attractor for the
dissipative 2D quasi-geostrophic equations, Comm. Math. Phys. 255
(2005), no 1, 161-181

[16] W.E AND C-W. SHU: Small scal structures in Boussinesq convection,
Phys. Fluids, 6 (1), 49-58, 1994.

University Bulletin — ISSUE No.18- Vol. (2) — May - 2016.




On The Global Well - Posedness Result

[17] S.Sulaiman: Global existence and uniqueness for a nonlinear

Boussinesq system in dimension two. J. Math. Phys. , 51, no. 9 :
093103, (2010).

[18] Triebel H. Theory of Function Spaces, Monograph in Mathematics,
vol. 78. Birkhouser: Basel, 1983.

[19] Y. Taniuchi, A note on the blow up criterion for the inviscid 2-D
Boussinesq equations, Lecture Notes in Pure and Applied Math., 223,
" the Navier Stokes equations: theory and numerical methods ", edited

by R. Salvi. (2002), pp. 131-140.

[20] T. Hmidi and S. Keraani, On the global well-posedness of the
Boussinesq system with zero diffusivity. Adv. Diff. Equations, 12, 4, p.
461-480, (2007).

[21] T. Hmidi and S. Keraani, On the global well-posedness of the
Boussinesq system with zero viscosity. Indiana. Univ. Math. J., 58,
no. 4. 159161618, (2009).

[22] T. Hmidi and S. Keraani, Incompressible viscous flows in Bordeline
Besov spaces, Arch. for Rational. Mech. and Analysis 189 (2008), no 2,
283-300.

[23] T. Hmidi, S. Keraani and F. Rousset: Global well-posedness for Euler
-Boussinesq system with critical dissipation. Comm. Partial
Differential Equations, 36, no. 3: 420-445, (2011).

[24] T. Hmidi and S. Keraani and F. Rousset: Global well-posedness for
Euler-Boussinesq system, with critical dissipation. J. Differentiql
Equations, 249 (2010), no. 9, 2147-2174.

[25] M. Vishik, Hydrodynamics in Besov spaces. Arch. Rational Mech.
Anal 145, p. 197-214, (1998).

University Bulletin — ISSUE No.18- Vol. (2) — May - 2016.




Dr. Samira Lamin Sulaiman

[26] E.M STEIN, Singular integral and differentiability properties of
functions. Princeton Mathematical Series, No. 30 Princeton University
Press Princeton, N.J. 1970.

University of Zawia, Libya

E-mail address: samira.sulaiman@gmail.com

University Bulletin — ISSUE No.18- Vol. (2) — May - 2016.




