
University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 25

Improving the Sending Per-Packet Processing

Overheads for High-speed Network using

Specialized RISC Processor

Dr. Mohamed Elbeshti

Dept. of Computer Science- faculty of Science, Zawia University

Abstract:

The promise of 40 and 100 gigabit Ethernet in the near future shows

that the processing needed for a network protocol is scaling at least as

quickly as communication speed. To keep up with this rapid increase in

speed, the end nodes have to increase the amount of the packet processing

to avoid the bottleneck in the network. Large Sending Offload LSO is a

defacto standard, which is offloaded to network interface for sending

packets up to 10 Gbps. In this paper, we have provided an appropriate

approach that can scale the LSO to high-speed communication line beyond

the 10 Gbps. A specialized cost-effective RISC core with low rate power

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 26

has been designed to execute the new scheme for the LSO to support

communication rate up to 100 Gbps. Other devices are; also implemented

to support the RISC like the DMA. The processing cycles that the RSIC

needed for TCP/IP and UDP/IP has been measured. The RISC’s

performance is also presented. A moderate rate with 423 MHz RISC core

can support the sending-side processing for up to 100 Gbps transmission

speed for the TCP/IP and UDP/IP protocols. A DMA with 2115 MHz is

applied in order to reduce the idle cycles of the RISC core.

Keywords; Large Sending Offload (LSO); RISC core; VHDL

behavior model; Cycle-accurate performance evaluations.

1.Introduction:

Using ASIC to design NIs provide a greater energy efficiency and

better integration than programmable-based. ASIC-based implementations

can also offer better performance than off-the-shelf processor-based

implementations. However, ASIC also limits flexibility, limits

upgradability, and makes NI design tailoring difficult in changing the

algorithm of the protocol or supporting a new version of protocols.

The recent advances in the area of CAD tools and Hardware

Description Languages (HDL) have made the design of embedded

processors for the performance of certain functions possible (e.g., recent

chips from Cavium [1] or Tilera [2]). System-on-chip technology has also

enhanced the possibility of integrating the hardware blocks required in the

NI and the General Purpose Processor (GPP) to be carried on one chip [3].

 The main contribution of this work is to enhance the Large Sending

Offload (LSO) processing cycles. These enhancements in the protocol

processing (e.g., the TCP/IP and UDP/IP) focus on reducing the pre-packet

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 27

processing overhead inside the network interface for the next generation

network.

The second contribution is designing and implementing a sending-

side for network interface that can run the proposed algorithm for high-

speed communication lines up to 100 Gbps using an embedded processor.

Many cost effective embedded cores have become available and can be

embedded to the Ethernet NI chip. However, these processors are not

optimized for LSO. Since these processors are designed to support general

functions, such as the control unit has to support general functions,

complex instructions long and variable execution time. These GPP also

have a large number of registers to accommodate all the possible use.

These features of the GPP might not be needed in NI. These advances in

the GPP have directed this research in investigating the use of specialized

RISC cores to process the developed LSO. At this stage, a behavior model

of the LSO processing is done to study the efficiency, scalability, and

performance of the designed model. In the future, we will target the design

to a fitting device to record a delay and energy consumption of the

proposed model.

The rest of this paper is organized as follows: Section 2 discusses the

sending side processing. In section 3, the model structure for sending side.

The behaviour model is in section 4. The core design is highlighted in

section 5. The VHDL-based simulation results are discussed in the next

section.

2. Large Sending Offload Processing :

 The LSO feature is helpful only on the transmit side, which is

freeing an OS from the task of segmenting the application’s that are larger

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 28

than the Maximum Transport Unit MTU [4]. The core engine in the NI is

responsible for handling these tasks related to transport layer. For instance,

the core engine in the NI divides the application data into Maximum

Segment Size (MSS) (i.e. 1460 bytes for TCP segment or 1472 bytes for

UDP fragment). The core also requires generating the packet header for

each outgoing MSS before sending the packet to MAC unit. Performing

complete packets (MSS + TCP/IP or UDP/IP header) are according to the

protocol type. For instance, TCP/IP protocol uses the two identifiers in

each packet; the Sequence Number (SN) and the Acknowledgment Number

(AKN). The beginning segment carries the start sequence number of data

and the AKN, which is a SN of the next expected data portion of the

transmission [5]. Fragmenting the UDP is quite different from TCP where

the fragmentation of the UPD messages is based on the IP header, such as

the MF field and the offset fields [6]. Each of the IP headers carries their

own header length, packet length (PL), and application data (AD). Where

the data packet is s defined as the packet length (PL) minus the length of its

IP header (PHL). From Equation 1, two fundamental concepts that the core

engine can be derived: the fragment offsets, and number of constituting

fragments.

AD = (MTU – HL) + (MTU-HL) + ADn

AD = (n-1) (MTU- PHL) + And (1)

The datagram can be sized up to 64 K byte (the receiver’s TCP

window size is set to 64 K byte). At the NI, the core engine after reading all

the information related to the moved datagram, such the position of the

message inside the NI’s buffer and the MSS, and then core examines the

size of the moved datagram. If the datagram is larger than the MTU, then

the core engine starts generating the network header for each MSS data.

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 29

The smart NI [7, 8] holds a TCP/IP header template that has the IP total

length, the initial SN. A copy of the template header whenever there are a

segment data needs to be sent to a network. It updates the essential fields

inside the TCP and the IP header of the copied headers before sending a

packet to MAC unit, such as the SN inside the TCP and the datagram total

length inside the IP header. However, these processing scenarios in these

implantations are successful in offloading the LSO to the NI, but still

cannot be scale it to express network since the header copy itself required

at least 10 cycles over the 64-bit bus (40 bytes of headers). In addition,

there was no explanation for the data movement’s methods inside the NI.

Moreover, there is no proven if the selected model can be used with other

protocols such as the UDP/IP.

 This paper provides an alternative method for sending data faster to

the physical and MAC units. This approach has focused on the header

process and data movements. For header processing, we have provided a

new algorithm for enhancement of the flow of the packets processing. After

the a host CPU stores the specified data that needed to be sent to a network

in the NI's Buffer, the core engine inside the NI then starts examining the

moved data. If the application data is over the MTU then, the first MSS of

the application data is a Beginning of Message (BOM). The core starts with

packet generating the network headers for BOM. Conceptually, each packet

required to a SN and AKN number inside the TCP header [5]. Within the

processing of the BOM, the IP total length is 1500 bytes (the default

MTU), unless the two networks ends specifies different size during the

connection setting up. The second part of application data is a Continuation

of Massage (COM). With COM, only needs to update some fields inside

network packet. For instance, the core engine requires updating the SN and

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 30

the AKN inside the TCP. The total length of the COM remains the same

(1500 bytes). In addition, the previous AKN is a SN of the current packet.

End of Message (EOM) is the last part of the message, which contains the

remaining data of the sent datagram. With EOM, the packet length not

always the same as the COM, then it needs to update the packet length

inside the IP header with the actual reaming data size. When the host CPU

sent a small sized data to NI (less than MTU), this is considered as a Single

Segment Message (SSM), can be sent as is to the MAC layer. Packets with

zero length are (signaling packets) are send as to MAC unit for further

processing.

To reduce the required processing that the core processor needed

generating the headers, we have added additional features to the LSO

processing BOM, COM, EOM or SSM, which is overlapping processing

technique. Processor can benefit from the transfer of data period by

implementing other processing required for the followed packets. We have

adjusted the LSO assembly code to keep the core engine busy while

transferring data. For example, the core calculates the remaining datagram

size inside the NI's buffer to figure out which subroutine code should

follow either COM or EOM.

3.Netwrok interface model for sending side:

In designing the target NI model, we have avoided using

multiprocessing cores as processing cores at the NI to serve a single

function, the LSO [9]. This study aims to use a single specialized RISC

core for processing the outgoing TCP and UDP packets. The core structure

and performance are addressed in this work. The have structured the

proposed sending-side the NI into three parts: communication Line

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 31

Interface (LI), kernel processing and Host Interface (HI) “Figure 1”. The

HI and LI are implemented in hardware. The processing unit in the NI,

which commonly processed functions that are related to header processing,

is an embedded specialized RISC. Since the receiving-side and sending-

side operations are completely independent, the NI is designed to handle

both operations in parallel. Two RISC-cores are considered for being in

the NIC: one for Sending-side and the other for receiving-side.

A Communication with the host CPU:

The NI communicates with the host through two FIFO buffers. The

FIFOs were implemented as memory-based, and the pointer of each FIFO

is stored in the RISC's register. The RISC reaches any FIFO after reading

its address. After the host CPU moves the message to the Sending buffer

(SB), the host required to notify the sender RISC by sending the location of

the message inside the SB and other necessary information needed for

segmented the message, such as the MSS through FIFO 2. The SEP also

sends the notification of the sending data through FIFO1to host CPU.

These FIFFO, therefore, is implemented to reduce the interrupt mechanism

that happens during the exchange of information which affects the overall

performance of NI or the host CPU [10]. Interrupting the host CPU or

RISC cores (Sending Embedded Processor (SEP)) during their processing

time effects the packet processing time [11], especially when the budget

time for processing a packet is small (for 100 Gbps the budget time is 123

ns per packet [12]).

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 32

B. Buffers :

The Sending Buffer Interface (SBI) VHDL based contains two

buffers each of which holds one packet (1500 bytes). The sequential

machine controls the SBI. Only one buffer activated to receive data at a

given time. The buffer will remain enabled until the complete packet has

been stored. Using two buffers contribute to the process of parallel

processing between the core engine and the MAC unit.

Figure 1: Sending Block Diagram

The sequential machine allows storing data in one buffer. After the

buffer gets fill, then sequential machine switches to the other SBI buffer.

SB is designed to be dual port memories. The SEP and the host can access

the local memories simultaneously. A 64-bit wide bus is used in this work

for transferring data from the SB to SBI.

C. Data movement methods:

Using the Programmed I/O (PI/O) method for data movement makes

the RISC core controlling the bus while data is moved. This means the

RISC processor is busy with the transfer of data from one location to

Sending Buffer

Interface (SBI)

RISC core

Receive

Embedded

Processor (REP)

DMA
Memory
manage

FIFO 2 Status and
control messages

FIFO 1 sending
status

Sending Buffer (SB)

Line Interface (LI)Host Interface (HI) Packet Processing

To/

From

Host

Local bus

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 33

another, especially when moving a large amount of data (1640 bytes) and

cannot executes other instruction. In this work, the DMA is used for

transferring data between the SB and the SBI. The RISC core initiates and

controls the DMA. Since the local bus is shared between the DMA and the

RISC core, the RISC core requires releasing the local bus to let the DMA

controller performing the data transfer. Each transfer of 64-bits consumes

two cycles. First cycle, the DMA controller reads the source buffer to get

64-bits to the DMA’s register. During the second DMA cycle, the words

move from the DMA’s register to the destination buffer. The DMA state

machine will then provide the read and write signals to the source and

destination buffers. The state machine in the DMA is also responsible for

incrementing of the address counter. A DMA with a single channel is

chosen in this work since only a single transfer at a time. Although, the use

of the DMA reduces the RISC processor instructions cycles from

transferring data, but it is not always the case that the DMA is better for all

data transfers. If the packet size is small (i.e. 64 bytes), the payload part is

only 6 bytes [12], the possible transfer can be handled more efficiently in

the PI/O. The overhead of setting up the DMA activity becomes

comparable to the cost of moving the data in PI/O. The decision on whether

to use the hardware or the software mode depends on the size of the data.

We have simulated the data movements for segmentation and

fragmentation function for TCP and UDP packets. The DMA controller is

responsible for moving the packet header as well as the payload part from

SB to SBI for both TCP and UDP protocol. If we consider the core engine,

responsible sending the packet header from its register to SBI, then it

copies the data to its register then stores it to SBI buffer. The core has to

wait for the DMA controller to release the local bus in order to deliver the

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 34

headers from its registers to SBI. In this simulator, the RISC core initiates

the DMA to transfer data from SB to SBI. The core is responsible to update

the packet headers for each segment inside the SB. Manage the messages

inside the SB, the processor uses several pointers in order to continue

updating packet headers inside the SB “Figure 2”; the Start Header Address

Pointer (SHAP), End-Header Address Pointer (EHAP), Start Payload

Pointer (SPP) and End-payload Pointer (EPP). The RISC core uses the

SHAP pointer for reach the network headers in side the SB. The SPP

pointer helps the RISC to locate the start of the message. The EPP is used

to point at the end of the last segment. The RISC updates this pointer

during the data movements of the first packet (the BOM).

4. Cycle processing of the behavior model:

The TCP payloads are varying in size from 6 to 1640 bytes [12]. The

DMA required moving data (i.e MSS is 1460 bytes) from the SB to SBI is

366 cycles (183 cycles to read payload data over the 64-bit bus to the

DMA's data register and 183 cycles to store it to RB). Clearly, the RISC

core will be in idle mode until the DMA completes moving the data

“Figure 3”. The RISC can execute 6 instructions during the data moments

and becomes idle with MSS at about 359 instructions. The idle cycle's

SHAP  start address,

EHAP  SHAP + 40 bytes

 (or 8 bytes for UDP)

SPP  EHAP + 8 bytes

 (46-bit)

EPP SPP + MSS

Figure 2: New approach of

sending packets over the

local bus.

IP header

TCP header

First Segment

Data

Network

headers

SHAP

EPP

SPP
EHAP

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 35

time affects the performance of the network card and its capabilities to

deal with high speed networks. Small size packets, such as 64 until 256

bytes, may require less DMA cycles than other packets that have more

payload bytes. However, using these small size packets could improve the

NI's performance, yet it affects the end node's throughput [13]. We have

focused on the 512 bytes packet to 1500 bytes packet. The use

of small packets can be studied on this Model, but they bear little payload

data and may not be able to achieve 100Gbps.

DMA transfer cycle

Check

the

current

packet‘s

protocol

TCP== 6

Update

the

pointers

PSP =

PEP

PEP =

PEP +

1460 B

Then(

COM)

Calculate

the new

Seq &

Ack

Check the

remaining

length

TL = TL –

1500 B

(Yes)

Initiated the

DMA to

move the

packet to

selected place

in the SB

Send first

Packet

Update the

IP and TCP

headers

TL = 1500

and Seq =0

Ack =1461

Get the first

size of data

top be sent

with the first

Segment

EPP = SHAP

+ MTU

Check the

length of

the this

message

TL>1500

bytes if

(yes)

Calculate

the

PEHA

 PSHA +

28 B

3 Inst. 3 Inst. 1 Inst. 4 Inst. 1 Inst. 1 Inst. 2 Inst. 2 Inst. 1 Inst.

Instructions executed before data

transfer (12 inst.)

Instructions executed during data

transfer (6 inst.)
RISC idle cycles

Figure 3: SEP processing the BOM required 18 instructions

The total RISC cycles are measured for BOM, COM, EOM and SSM

for both TCP and UDP protocol “Figure 4”. The network performance

becomes poor to perform the target goal, the 40 and 100 Gbps. The RISC

instruction recorded 50 cycles (packet processing and idles cycles) when

performing the BOM messages. Table 1 shows the total instruction that the

RISC need to complete the TCP or UDP packets. It is clear that, the idle

cycles are reducing the NI’s performance. We have studied the ways

that can be used to reduce or to eliminate the idle cycles of the RISC. One

of these solutions is the use of a multi-bus based on the sending side. The

RISC can access the multiport memories while the DMA controller moves

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 36

data. The other approach is to use a DMA that runs at a higher clock rate

than the RISC

Number of instruction

Figure 4: Total RISC processing instructions for TCP and UDP packets

 Table 1: Total RISC Instructions for Segmentation and Fragmentation when the

DMA has Five Clock Cycle of the RISC

Packet Type

Packet Size

1500 bytes 1024 bytes 512 bytes

Total RISC
Inst.

Idle
Inst.

Total RISC
Inst.

Idle
Inst.

Total RISC
Inst.

Idle
Inst.

TCP

SSM 45 37 33 25 20 12
BOM 49 31 37 19 24 5
COM 41 31 29 19 16 6
EOM 41 37 30 25 17 11

UDP

SSM 45 37 33 25 22 13
BOM 49 31 37 19 25 7
COM 40 32 28 20 16 8
EOM 40 37 28 25 16 12

We have adapted the way of using it that we presented in “Figure 1”,

since it is a straightforward data path scenario and easily implemented

TCP - BOM

UDP- BOM

TCP - COM

UDP- COM

TCP - EOM

UDP- EBOM

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 37

without any changes in the NI's architecture. We have started adjusting the

DMA's clock to reduce the idle cycles. In order to study and analyse the

cycle –accurate NI simulator, we sent different large packets to the sending

side. Each time we increased the DMA's clock to reduce the idle cycles, we

have noticed that the RISC core and DMA controller were

working quickly to complete each message and transfer it to RB.

When DMA’s clock has five times the embedded processor core, the NI

performance is increased significantly, where most, if not all, the idle

cycles are reduced (Table 2). Table 2 presents the total RISC and idle

cycles for TCP/IP and UDP/IP packets when the DMA become five times

the clock rate of the RISC core. When the packet size is 512 bytes, the idle

cycles are reduced significantly. The DMA and the RISC core clock rate

have measured “Figure 5”. The DMA with 2115 MHz is found when the

packet size is 512 bytes. This naturally increases the speed of the DMA

with increased sending packets from SB to SBI. We have fixed the DMA

clock rate to 2115 MHz and used this rate with other packet sizes (larger

than 512 bytes). This rate of the DMA’s clock helps to reduce the idle

cycles in the other packets those are larger than the 512 bytes, such as 1500

bytes. The performance of the NI is enhanced significantly when the DMA

is 2115 MHz. This is because the number of messages that the core needs

to send is less than in the case of 512, which is only 81274382 packets per

second when the packet size is 1500 bytes.

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 38

Table 2: Total RSIC Instructions to Complete Processing THE LSO, when the

DMA Becomes 2115 MHz

Packet Type

Packet Size
1500 bytes 1024 bytes 512 bytes

Total RISC
Inst.

Idle
Inst.

Total RISC
Inst.

Idle
Inst.

Total RISC
Inst.

Idle
Inst.

TCP

SSM 18 9 15 6 20 11
BOM 23 4 20 1 24 5
COM 14 4 11 1 16 6
EOM 15 9 11 5 17 11

UDP

SSM 8 0 8 0 22 13
BOM 23 5 20 2 25 7
COM 13 5 11 3 16 8
EOM 13 9 11 7 16 12

Figure 5: The RISC and DMA clock rate in MHz for TCP Segmentation and UDP

Fragmentation (When the DMA has five RISC's clock rate)

5. RISC core :

Design a RISC core for specialized application, namely NI control

and data path, is simpler than using the off-the-shelf GPP processors.

These general-purpose embedded processors are not optimized for a LSO

function. Hence, some portions of GPP instructions that support general-

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 39

purpose applications may not be required for the ENI design. For example,

the Floating-Point Unit is not necessary for network interfaces. Also, we

found that, using a data cache to store data is not required since it will not

enhance the NI's performance or reduce the RISC' clock for this

application. The elimination of these units in the design the core simplifies

the process of development of NI and reduces the size and cost.

RISC pipelines divide the execution of an instruction into a number

of steps, or pipeline stages. The depth of a pipeline corresponds to the

number of pipeline stages. The NI RISC core has been designed to execute

one instruction in three-pipeline stage: Fetch an instruction from local

memory (Fetch stage). Decode/execute the instruction and registers read

(Decode/Execute stage). Store results back into the destination register

(write back, or W/B, stage).

We have noticed also that the RISC performs a few of the

instructions to complete processing the LSO. These instructions are load,

store, arithmetic and logic operation and conditional branches. The

minimum type the instructions set used in the LSO function would make

the control unit design simple and fast. In addition, the limited number of

instructions that are required to support the Ethernet interface processing

can reduce the size and complexity of the control unit leading to an

increased speed.

6. Simulation results:

In the LSO function processing, it is clear that the RISC processing

time becomes less when the DMA has a clock rate faster than the RISC

core is (Five times faster the RISC's clock) where all the idle cycle

associated with the RISC core processing has eliminated. We monitored

the highest clock rate of the RISC core during processing the different

packets. We have found the VHDL behavior model for the sending unit of

the network interface has a 148 MHz RISC processor that can support 100

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 40

Gbps lines, when the DMA speed is 2115 MHz, and the packet size is

1500 bytes “Table 3”. A RISC core with 423 MHz can be used to process

the LSO at 100 Gbps when the packet size is 512bytes.

A comparison of the RISC performance with the two approaches has

been implemented. The First is copying the TCP and IP headers (that Host

CPUT sent) from the SB to RISC’s internal register. The Second is to

updating the packet headers is side the SB. After generating the packet

header for each segment, the RISC needs to send the TCP and IP header to

SBI for further processing. As a result, with the first LSO processing the

RISC with 893 MHz is needed for 100 Gbps “Table 4”. It is clear that the

RISC could spend more cycles than second approach since it needs to

transfer the packet header from the internal buffer to SBI. Modify the

original header packet within the SB enhances and improves process LSO.

Initiating the DMA to transfer the packet header from the SB to SBI

reduces the power of the RSIC to 423 MHz. The second approach of

processing LSO also gives the RISC core more space executing other

functions that do not need to use local bus, such as calculating the next

header’s fields or checking the remaining size of the application data inside

RB.

Table 3: RISC Clock Rate for LSO using DMA for data Transfer (When the DMA

2115MHz)

RISC MHz

Packet Size 1500 byte 1024 byte 512 byte

40 GBPS 60 87 170

100 GBPS 148 216 423

 7. Conclusion:

We have reported on improving the Large Sending Offload per-

packet processing overheads inside the network interface to keep up with

ـــ Dr. Mohamed Elbeshti

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 41

the rapid increase in speed. We have presented a computer simulation

results to measure the amount of process-support a wide range of

transmission line speed, up to 100 Gbps. A 423 MHz RISC core can

support the sending side processing for for TCP/IP and UDP/IP. Assuming

a fast DMA (2115 MHz) is required to eliminate the RISC idle cycles. The

DMA clock is considered high; this is because of the size of the local bus is

64-bit. The DMA clock rate decreases

support a wide range of transmission line speed, up to 100 Gbps. A

423 MHz RISC core can support the sending side processing for for

TCP/IP and UDP/IP. Assuming a fast DMA (2115 MHz) is required to

eliminate the RISC idle cycles. The DMA clock is considered high; this is

because of the size of the local bus is 64-bit. The DMA clock rate decreases

significantly if the local bus becomes wider (i.e. 320 bit [14]). The scalable

NI based programmable could provide the flexibility needed for adding a

new, or modify, protocol functions while ASICs based solutions could

provide better performance but are not flexible enough to add new or

modify features.

Table 4: A comparison of the RISC performance with header processing

approaches.

1500 bytes 125 313 60 148

1024 byes 182 455 87 216

512 bytes 357 893 169 423

40 Gbps 100 Gbps 40 Gbps 100 Gbps

RISC responsible for Header

movements

Our Method, using

initiating the DMA for

LSO

RISC MHz

References:

[1] Cavium, Octeon II CN63XX Intelligent Network Adapter Family

http://www.cavium.com/pdfFiles/OCTEON_II_CN63XX_Adapter.pdf?x

=2

Improving the Sending Per-Packet Processing Overheads ــ

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 42

[2] Telera, Network interface-based processor

 http://www.tilera.com/sites/default/files/productbrief/

TILEProEncore_PB024_v5_0.pdf (accessed Sep,2016)

[3] C. Cranor et al .Architecture considerations for CPU and network

interface integration IEEE Micro, January–February (2008), pp. 18–

26.
[4] RFC 1191- MTU discovery. Nov 1990 .
[5] J. B. Postel, “Transmission Control Protocol,” NIC- RFC 793,

Information Sciences Institute, Sept. 1981 .
[6] J. Postel RFC 791 Internet Protocol, protocol specification 1981

[7] O. Cardona and J. B. Cunnlngham.“ System Load Based Dynamic

Segmentation for Network Interface Card.” U. S. Patent 0295098 A1.

2008

[8] G.Wiilium and W. Paul.“ ofload of TCP Segmentation to a Smart

Adapter.” U. S. Patent 5937169. 2014 .
[9] H. Kim, V. S. Pai and S.Rixner, “ Exploiting task-level concurrency in

a programmable network interface,” Proceedings of the ninth ACM

SIGPLAN symposium on Principles and practice of parallel

programming, pp 61-72, 2003.
[11] C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an

interrupt-driven kernel. ACM Transactions on Computer Systems,

15(3):217-252, 1997.
[11] H. Jin and C. Yoo. “Impact of protocol overheads on network

throughput over high-speed interconnects: measurement, analysis, and

improvement.” Journal of Supercomputing,Volume 41,Number

1/July,200

[12] G. Held “Ethernet Networks (4th ed),” Design, Implantation,

Operation and Management. John Wiley publisher LTD, 2003.
[13] S. Makineni and R. Iyer,” Measurement-based analysis of TCP/IP

processing requirements,” In 10th International Conference on High

Performance Computing (HiPC 2013),Hyderabad, India, December

2003.
[14] Altera.”40- and 100-Gbps Ethernet MAC and PHY” June 2014

