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Abstract: 

The promise of 40 and 100 gigabit Ethernet in the near future shows 

that the  processing needed for a network protocol is scaling at least as 

quickly as communication speed. To keep up with this rapid increase in 

speed, the end nodes have to  increase the  amount of the packet processing 

to avoid the bottleneck in the network. Large Sending Offload LSO is a 

defacto standard, which is offloaded to network interface for sending 

packets up to 10 Gbps. In this paper, we have provided an appropriate 

approach that can scale the LSO to high-speed communication line beyond 

the 10 Gbps. A specialized cost-effective RISC core with low rate power 
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has been designed to execute the new scheme for the LSO to support 

communication rate up to 100 Gbps. Other devices are; also implemented 

to support the RISC like the DMA. The processing cycles that the RSIC 

needed for TCP/IP and UDP/IP has been measured. The RISC’s 

performance is also presented. A moderate rate with 423 MHz RISC core 

can support the sending-side processing for up to 100 Gbps transmission 

speed for the TCP/IP and UDP/IP protocols. A DMA with 2115 MHz is 

applied in order to reduce the idle cycles of the RISC core.  

Keywords; Large Sending Offload (LSO); RISC core; VHDL 

behavior model; Cycle-accurate performance evaluations. 

1.Introduction: 

Using ASIC to design NIs provide a greater energy efficiency and 

better integration than programmable-based. ASIC-based implementations 

can also offer better performance than off-the-shelf processor-based 

implementations. However, ASIC also limits flexibility, limits 

upgradability, and makes NI design tailoring difficult in changing the 

algorithm of the protocol or supporting a new version of protocols.  

The recent advances in the area of CAD tools and Hardware 

Description Languages (HDL) have made the design of embedded 

processors for the performance of certain functions  possible (e.g., recent 

chips from Cavium [1] or Tilera [2]). System-on-chip technology has also 

enhanced the possibility of integrating the hardware blocks required in the 

NI and the General Purpose Processor (GPP) to be carried on one chip [3].   

 The main contribution of this work is to enhance the Large Sending 

Offload (LSO) processing cycles. These enhancements in the protocol 

processing (e.g., the TCP/IP and UDP/IP) focus on reducing the pre-packet 
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processing overhead inside the network interface for the next generation 

network.  

The second contribution is designing and implementing a sending-

side for network interface that can run the proposed algorithm for high-

speed communication lines up to 100 Gbps using an embedded processor. 

Many cost effective embedded cores have become available and can be 

embedded to the Ethernet NI chip. However, these processors are not 

optimized for LSO. Since these processors are designed to support general 

functions, such as the control unit has to support general functions, 

complex instructions long and variable execution time. These GPP also 

have a large number of registers to accommodate all the possible use. 

These features of the GPP might not be needed in NI. These advances in 

the GPP have directed this research in investigating the use of specialized 

RISC cores to process the developed LSO. At this stage, a behavior model 

of the LSO processing is done to study the efficiency, scalability, and 

performance of the designed model. In the future, we will target the design 

to a fitting device to record a delay and energy consumption of the 

proposed model. 

The rest of this paper is organized as follows: Section 2 discusses the 

sending side processing. In section 3, the model structure for sending side. 

The behaviour model is in section 4. The core design is highlighted in 

section 5.  The VHDL-based simulation results are discussed in the next 

section.     

2. Large Sending Offload Processing : 

 The LSO feature is helpful only on the transmit side, which is 

freeing an OS from the task of segmenting the application’s that are larger 
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than the Maximum Transport Unit MTU [4]. The core engine in the NI is 

responsible for handling  these tasks related to transport layer. For instance, 

the core engine in the NI divides the application data into Maximum 

Segment Size (MSS) (i.e. 1460 bytes for TCP segment or 1472 bytes for 

UDP fragment). The core also requires generating the packet header for 

each outgoing MSS before sending the packet to MAC unit. Performing 

complete packets (MSS + TCP/IP or UDP/IP header) are according to the 

protocol type. For instance, TCP/IP protocol uses the two identifiers in 

each packet; the Sequence Number (SN) and the Acknowledgment Number 

(AKN). The beginning segment carries the start sequence number of data 

and the AKN, which is a SN of the next expected data portion of the 

transmission [5]. Fragmenting the UDP is quite different from TCP where 

the fragmentation of the UPD messages is based on the IP header, such as 

the MF field and the offset fields [6]. Each of the IP headers carries their 

own header length, packet length (PL), and application data (AD). Where 

the data packet is s defined as the packet length (PL) minus the length of its 

IP header (PHL). From Equation 1, two fundamental concepts that the core 

engine can be derived: the fragment offsets, and number of constituting 

fragments.  

AD = (MTU – HL) + (MTU-HL) + ADn 

AD = (n-1) (MTU- PHL) + And              (1) 

The datagram can be sized up to 64 K byte (the receiver’s TCP 

window size is set to 64 K byte). At the NI, the core engine after reading all 

the information related to the moved datagram, such the position of the 

message inside the NI’s buffer and the MSS, and then core examines the 

size of the moved datagram. If the datagram is larger than the MTU, then 

the core engine starts generating the network header for each MSS data.  
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The smart NI [7, 8] holds a TCP/IP header template that has the IP total 

length, the initial SN. A copy of the template header whenever there are a 

segment data needs to be sent to a network.  It updates the essential fields 

inside the TCP and the IP header of the copied headers before sending a 

packet to MAC unit, such as the SN inside the TCP and the datagram total 

length inside the IP header. However, these processing scenarios in these 

implantations are successful in offloading the LSO to the NI, but still 

cannot be scale it to express network since the header copy itself required 

at least 10 cycles over the 64-bit bus (40 bytes of headers). In addition, 

there was no explanation for the data movement’s methods inside the NI. 

Moreover, there is no proven if the selected model can be used with other 

protocols such as the UDP/IP. 

  This paper provides an alternative method for sending data faster to 

the physical and MAC units. This approach has focused on the header 

process and data movements. For header processing, we have provided a 

new algorithm for enhancement of the flow of the packets processing. After 

the a host CPU stores the specified data that needed to be sent to a network 

in the NI's Buffer, the core engine inside the NI then starts examining the 

moved data. If the application data is over the MTU then, the first MSS of 

the application data is a Beginning of Message (BOM). The core starts with 

packet generating the network headers for BOM. Conceptually, each packet 

required to a SN and AKN number inside the TCP header [5]. Within the 

processing of the BOM, the IP total length is 1500 bytes (the default 

MTU), unless the two networks ends specifies different size during the 

connection setting up. The second part of application data is a Continuation 

of Massage (COM). With COM, only needs to update some fields inside 

network packet. For instance, the core engine requires updating the SN and 
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the AKN inside the TCP. The total length of the COM remains the same 

(1500 bytes). In addition, the previous AKN is a SN of the current packet. 

End of Message (EOM) is the last part of the message, which contains the 

remaining data of the sent datagram. With EOM, the packet length not 

always the same as the COM, then it needs to update the packet length 

inside the IP header with the actual reaming data size. When the host CPU 

sent a small sized data to NI (less than MTU), this is considered as a Single 

Segment Message (SSM), can be sent as is to the MAC layer. Packets with 

zero length are (signaling packets) are send as to MAC unit for further 

processing.  

To reduce the required processing that the core processor needed 

generating the headers, we have added additional features to the LSO 

processing BOM, COM, EOM or SSM, which is overlapping processing 

technique. Processor can benefit from the transfer of data period by 

implementing other processing required for the followed packets. We have 

adjusted the LSO assembly code to keep the core engine busy while 

transferring data. For example, the core calculates the remaining datagram 

size inside the NI's buffer to figure out which subroutine code should 

follow either COM or EOM. 

3.Netwrok interface  model for sending side: 

In designing the target NI model, we have avoided using 

multiprocessing cores as processing cores at the NI to serve a single 

function, the LSO [9]. This study aims to use a single   specialized RISC 

core for processing the outgoing TCP and UDP packets. The core structure 

and performance are addressed in this work.  The have structured the 

proposed sending-side the NI into three parts: communication Line 
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Interface (LI), kernel processing and Host Interface (HI) “Figure 1”.  The 

HI and LI are implemented in hardware. The processing unit in the NI, 

which commonly processed functions that are related to header processing, 

is an embedded specialized RISC. Since the receiving-side and sending-

side operations are completely independent, the NI is designed to handle 

both operations in parallel.  Two RISC-cores are considered for being in 

the NIC:  one for Sending-side and the other for receiving-side.   

A Communication with the host CPU: 

The NI communicates with the host through two FIFO buffers. The 

FIFOs were implemented as memory-based, and the pointer of each FIFO 

is stored in the RISC's register.  The RISC reaches any FIFO after reading 

its address.  After the host CPU moves the message to the Sending buffer 

(SB), the host required to notify the sender RISC by sending the location of 

the message inside the SB and other necessary information needed for 

segmented the message, such as the MSS through FIFO 2. The SEP also 

sends the notification of the sending data through FIFO1to host CPU. 

These FIFFO, therefore, is implemented to reduce the interrupt mechanism 

that happens during the exchange of information which affects the overall 

performance of NI or the host CPU [10]. Interrupting the host CPU or 

RISC cores (Sending Embedded Processor (SEP)) during their processing 

time effects the packet processing time [11], especially when the budget 

time for processing a packet is small (for 100 Gbps the budget time is 123 

ns per packet [12]).  
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B. Buffers : 

The Sending Buffer Interface (SBI) VHDL based contains two 

buffers each of which holds one packet (1500 bytes).  The sequential 

machine controls the SBI. Only one buffer activated to receive data at a 

given time. The buffer will remain enabled until the complete packet has 

been stored. Using two buffers contribute to the process of parallel 

processing between the core engine and the MAC unit.  

 

Figure  1: Sending Block Diagram 

The sequential machine allows storing data in one buffer. After the 

buffer gets fill, then sequential machine switches to the other SBI buffer.  

SB is designed to be dual port memories. The SEP and the host can access 

the local memories simultaneously.  A 64-bit wide bus is used in this work 

for transferring data from the SB to SBI.  

C.  Data movement methods:  

Using the Programmed I/O (PI/O) method for data movement makes 

the RISC core controlling the bus while data is moved. This means the 

RISC processor is busy with the transfer of data from one location to 
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another, especially when moving a large amount of data (1640 bytes) and 

cannot executes other instruction. In this work, the DMA is used for 

transferring data between the SB and the SBI. The RISC core initiates and 

controls the DMA. Since the local bus is shared between the DMA and the 

RISC core, the RISC core requires releasing the local bus to let the DMA 

controller performing the data transfer. Each transfer of 64-bits consumes 

two cycles. First cycle, the DMA controller reads the source buffer to get 

64-bits to the DMA’s register. During the second DMA cycle, the words 

move from the DMA’s register to the destination buffer. The DMA state 

machine will then provide the read and write signals to the source and 

destination buffers. The state machine in the DMA is also responsible for 

incrementing of the address counter. A DMA with a single channel is 

chosen in this work since only a single transfer at a time. Although, the use 

of the DMA reduces the RISC processor instructions cycles from 

transferring data, but it is not always the case that the DMA is better for all 

data transfers. If the packet size is small (i.e. 64 bytes), the payload part is 

only 6 bytes [12], the possible transfer can be handled more efficiently in 

the PI/O. The overhead of setting up the DMA activity becomes 

comparable to the cost of moving the data in PI/O. The decision on whether 

to use the hardware or the software mode depends on the size of the data. 

We have simulated the data movements for segmentation and 

fragmentation function for TCP and UDP packets. The DMA controller is 

responsible for moving the packet header as well as the payload part from 

SB to SBI for both TCP and UDP protocol. If we consider the core engine, 

responsible sending the packet header from its register to SBI, then it 

copies the data to its register then stores it to SBI buffer. The core has to 

wait for the DMA controller to release the local bus in order to deliver the 
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headers from its registers to SBI. In this simulator, the RISC core initiates 

the DMA to transfer data from SB to SBI. The core is responsible to update 

the packet headers for each segment inside the SB. Manage the messages 

inside the SB, the processor uses several pointers in order to continue 

updating packet headers inside the SB “Figure 2”; the Start Header Address 

Pointer (SHAP), End-Header Address Pointer (EHAP), Start Payload 

Pointer (SPP) and End-payload Pointer (EPP).  The RISC core uses the 

SHAP pointer for reach the network headers in side the SB. The SPP 

pointer helps the RISC to locate the start of the message. The EPP is used 

to point at the end of the last segment. The RISC updates this pointer 

during the data movements of the first packet (the BOM). 

 

4. Cycle processing of the behavior model: 

The TCP payloads are varying in size from 6 to 1640 bytes [12]. The 

DMA required moving data (i.e MSS is 1460 bytes) from the SB to SBI is 

366 cycles (183 cycles to read payload data over the 64-bit bus to the 

DMA's data register and 183 cycles to store it to RB). Clearly, the RISC 

core will be in idle mode until the DMA completes moving the data 

“Figure 3”. The RISC can execute 6 instructions during the data moments 

and becomes idle with MSS at about 359 instructions. The idle cycle's 

SHAP   start address,  

EHAP  SHAP + 40 bytes   

          (or 8 bytes for UDP) 

SPP   EHAP + 8 bytes    

                          (46-bit) 

EPP SPP + MSS   

 

 

Figure 2: New approach of 

sending packets over the 

local bus. 

 

IP header

TCP header

First Segment 

Data

Network 

headers

SHAP

EPP

SPP
EHAP



ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  Dr. Mohamed Elbeshti 

 

University Bulletin – ISSUE No.19- Vol. (2) – April- 2017. 35 

 

time affects the performance of the network card and its capabilities to 

deal with high speed networks.  Small size packets, such as 64 until 256 

bytes, may require less DMA cycles than other packets that have more 

payload bytes. However, using these small size packets could improve the 

NI's performance, yet it affects the end node's throughput [13]. We have 

focused on the 512 bytes packet to 1500 bytes packet. The use 

of small packets can be studied on this Model, but they bear little payload 

data and may not be able to achieve 100Gbps. 
 

DMA transfer cycle

Check 

the 

current 

packet‘s 

protocol

TCP== 6

Update 

the 

pointers 

PSP = 

PEP

PEP = 

PEP + 

1460 B

Then( 

COM)

Calculate 

the new 

Seq & 

Ack

Check the 

remaining 

length 

TL = TL – 

1500 B

(Yes)

Initiated the 

DMA to 

move the 

packet to 

selected place 

in the SB

Send first 

Packet

Update the 

IP and  TCP 

headers

TL = 1500 

and  Seq =0

Ack =1461 

Get the first 

size of data 

top be sent 

with the first 

Segment 

EPP = SHAP 

+ MTU 

Check the 

length of 

the this 

message  

TL>1500 

bytes if 

(yes)

Calculate 

the 

PEHA

 PSHA + 

28 B

3 Inst. 3 Inst. 1 Inst. 4 Inst. 1 Inst. 1 Inst. 2 Inst. 2 Inst. 1 Inst.

Instructions  executed before data 

transfer (12 inst.)

Instructions  executed during data 

transfer (6 inst.)
RISC idle cycles

 

Figure 3: SEP processing the BOM required 18 instructions 

The total RISC cycles are measured for BOM, COM, EOM and SSM 

for both TCP and UDP protocol “Figure 4”. The network performance 

becomes poor to perform the target goal, the 40 and 100 Gbps. The RISC 

instruction recorded 50 cycles (packet processing and idles cycles) when 

performing the BOM messages. Table 1 shows the total instruction that the 

RISC need to complete the TCP or UDP packets. It is clear that, the idle 

cycles are reducing the NI’s performance. We have studied the ways 

that can be used to reduce or to eliminate the idle cycles of the RISC. One 

of these solutions is the use of a multi-bus based on the sending side. The 

RISC can access the multiport memories while the DMA controller moves 
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data. The other approach is to use a DMA that runs at a higher clock rate 

than the RISC 

 

Number of instruction 

Figure 4: Total RISC processing instructions for TCP and UDP packets 

    Table 1: Total RISC Instructions for Segmentation and Fragmentation when the 

DMA has Five Clock Cycle of the RISC 

 
Packet  Type 

Packet Size 

1500 bytes 1024 bytes 512 bytes 

Total RISC 
Inst. 

Idle 
Inst. 

Total RISC 
Inst. 

Idle 
Inst. 

Total RISC 
Inst. 

Idle 
Inst. 

 
 

TCP 

SSM 45 37 33 25 20 12 
BOM 49 31 37 19 24 5 
COM 41 31 29 19 16 6 
EOM 41 37 30 25 17 11 

 
UDP 

SSM 45 37 33 25 22 13 
BOM 49 31 37 19 25 7 
COM 40 32 28 20 16 8 
EOM 40 37 28 25 16 12 

 

We have adapted the way of using it that we presented in “Figure 1”, 

since it is a straightforward data path scenario and easily implemented 
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without any changes in the NI's architecture. We have started adjusting the 

DMA's clock to reduce the idle cycles. In order to study and analyse the 

cycle –accurate NI simulator, we sent different large packets to the sending 

side. Each time we increased the DMA's clock to reduce the idle cycles, we 

have noticed that the RISC core and DMA controller were 

working quickly to complete each message and transfer it to RB. 

When DMA’s clock has five times the embedded processor core, the NI 

performance is increased significantly, where most, if not all, the idle 

cycles are reduced (Table 2). Table 2 presents the total RISC and  idle 

cycles for TCP/IP and UDP/IP packets when the DMA become five times 

the clock rate of the RISC core. When the packet size is 512 bytes, the idle 

cycles are reduced significantly. The DMA and the RISC core clock rate 

have measured “Figure 5”. The DMA with 2115 MHz is found when the 

packet size is 512 bytes. This naturally increases the speed of the DMA 

with increased sending packets from SB to SBI.  We have fixed the DMA 

clock rate to 2115 MHz and used this rate with other packet sizes (larger 

than 512 bytes). This rate of the DMA’s clock helps to reduce the idle 

cycles in the other packets those are larger than the 512 bytes, such as 1500 

bytes. The performance of the NI is enhanced significantly when the DMA 

is 2115 MHz.  This is because the number of messages that the core needs 

to send is less than in the case of 512, which is only 81274382 packets per 

second when the packet size is 1500 bytes.  
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Table 2: Total RSIC Instructions to Complete Processing THE LSO, when the 

DMA Becomes 2115 MHz 

 
Packet  Type 

Packet Size 
1500 bytes 1024 bytes 512 bytes 

Total RISC 
Inst. 

Idle 
Inst. 

Total RISC 
Inst. 

Idle 
Inst. 

Total RISC 
Inst. 

Idle 
Inst. 

 
 

TCP 

SSM 18 9 15 6 20 11 
BOM 23 4 20 1 24 5 
COM 14 4 11 1 16 6 
EOM 15 9 11 5 17 11 

 
UDP 

SSM 8 0 8 0 22 13 
BOM 23 5 20 2 25 7 
COM 13 5 11 3 16 8 
EOM 13 9 11 7 16 12 

 

  
Figure 5: The RISC and DMA clock rate in MHz for TCP Segmentation and  UDP 

Fragmentation (When the DMA has  five RISC's clock rate) 

5. RISC core : 

Design a RISC core for specialized application, namely NI control 

and data path, is simpler than using the off-the-shelf GPP processors.  

These general-purpose embedded processors are not optimized for a LSO 

function. Hence, some portions of GPP instructions that support general-
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purpose applications may not be required for the ENI design. For example, 

the Floating-Point Unit is not necessary for network interfaces. Also, we 

found that, using a data cache to store data is not required since it will not 

enhance the NI's performance or reduce the RISC' clock for this 

application. The elimination of these units in the design the core simplifies 

the process of development of NI and reduces the size and cost.   

RISC pipelines divide the execution of an instruction into a number 

of steps, or pipeline stages. The depth of a pipeline corresponds to the 

number of pipeline stages.  The NI RISC core has been designed to execute 

one instruction in three-pipeline stage: Fetch an instruction from local 

memory (Fetch stage). Decode/execute the instruction and registers read 

(Decode/Execute stage). Store results back into the destination register 

(write back, or W/B, stage). 

We have noticed also that the RISC performs a few of the 

instructions to complete processing the LSO. These instructions are load, 

store, arithmetic and logic operation and conditional branches. The 

minimum type the instructions set used in the LSO function would make 

the control unit design simple and fast. In addition, the limited number of 

instructions that are required to support the Ethernet interface processing 

can reduce the size and complexity of the control unit leading to an 

increased speed.  

6.  Simulation results:    

In the LSO function processing, it is clear that the RISC processing 

time becomes less when the DMA has a clock rate faster than the RISC 

core is (Five times faster the RISC's clock) where all the idle cycle 

associated with the RISC core processing has eliminated.  We monitored 

the highest clock rate of the RISC core during processing the different 

packets. We have found the VHDL behavior model for the sending unit of 

the network interface has a 148 MHz RISC processor that can support 100 
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Gbps lines, when   the DMA speed is 2115 MHz, and the packet size is 

1500 bytes “Table 3”. A RISC core with 423 MHz can be used to process 

the LSO at 100 Gbps when the packet size is 512bytes.  

A comparison of the RISC performance with the two approaches has 

been implemented. The First is copying the TCP and IP headers (that Host 

CPUT sent) from the SB to RISC’s internal register. The Second is to 

updating the packet headers is side the SB. After generating the packet 

header for each segment, the RISC needs to send the TCP and IP header to 

SBI for further processing. As a result, with the first LSO processing the 

RISC with 893 MHz is needed for 100 Gbps “Table 4”. It is clear that the 

RISC could spend more cycles than second approach since it needs to 

transfer the packet header from the internal buffer to SBI. Modify the 

original header packet within the SB enhances and improves process LSO. 

Initiating the DMA to transfer the packet header from the SB to SBI 

reduces the power of the RSIC to 423 MHz. The second approach of 

processing LSO also gives the RISC core more space executing other 

functions that do not need to use local bus, such as calculating the next 

header’s fields or checking the remaining size of the application data inside 

RB.  

Table 3: RISC Clock Rate for LSO using DMA for data Transfer (When the DMA 

2115MHz) 

 
RISC MHz 

Packet Size 1500 byte 1024 byte 512 byte 

40 GBPS 60 87 170 

100 GBPS 148 216 423 

 7. Conclusion:   

We have reported on improving the Large Sending Offload per-

packet processing overheads inside the network interface to keep up with 
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the rapid increase in speed. We have presented a computer simulation 

results to measure the amount of process-support a wide range of 

transmission line speed, up to 100 Gbps. A 423 MHz RISC core can 

support the sending side processing for for TCP/IP and UDP/IP. Assuming 

a fast DMA (2115 MHz) is required to eliminate the RISC idle cycles.  The 

DMA clock is considered high; this is because of the size of the local bus is 

64-bit. The DMA clock rate decreases 

support a wide range of transmission line speed, up to 100 Gbps. A 

423 MHz RISC core can support the sending side processing for for 

TCP/IP and UDP/IP. Assuming a fast DMA (2115 MHz) is required to 

eliminate the RISC idle cycles.  The DMA clock is considered high; this is 

because of the size of the local bus is 64-bit. The DMA clock rate decreases 

significantly if the local bus becomes wider (i.e. 320 bit [14]). The scalable 

NI based programmable could provide the flexibility needed for adding a 

new, or modify, protocol functions while ASICs based solutions could 

provide better performance but are not flexible enough to add new or 

modify features. 

Table 4: A comparison of the RISC performance with header processing 

approaches. 

1500 bytes 125 313 60 148

1024 byes 182 455 87 216

512 bytes 357 893 169 423

40 Gbps 100 Gbps 40 Gbps 100 Gbps

RISC responsible for Header 

movements 

Our Method, using 

initiating the DMA for 

LSO

RISC MHz
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